refactor probability playground

This commit is contained in:
relikd
2021-01-20 00:26:04 +01:00
parent 7e363a670a
commit 2cf95914b6
8 changed files with 382 additions and 376 deletions

View File

@@ -1,206 +1,58 @@
#!/usr/bin/env python3
import math
import re
from RuneSolver import VigenereSolver
from RuneText import Rune, RuneText
from RuneText import RuneText
from NGrams import NGrams
from HeuristicSearch import GuessVigenere, SearchInterrupt
# from FailedAttempts import NGramShifter
RUNES = 'ᚠᚢᚦᚩᚱᚳᚷᚹᚻᚾᛁᛄᛇᛈᛉᛋᛏᛒᛖᛗᛚᛝᛟᛞᚪᚫᚣᛡᛠ'
RCOUNT = len(RUNES)
ORG_INTERRUPT = RUNES.index('')
ORG_INTERRUPT = ''
INV_INTERRUPT = RUNES.index(ORG_INTERRUPT)
INVERT = False
INV_INTERRUPT = (28 - ORG_INTERRUPT) if INVERT else ORG_INTERRUPT
LOOK_AHEAD = 9 # look ahead
APPEND_REMAINING = False # should it incl. text past the look ahead?
if INVERT:
INV_INTERRUPT = 28 - INV_INTERRUPT
re_norune = re.compile('[^' + RUNES + ']')
def main():
# BaselineProbability.translate()
# BaselineProbability.make('data/p-solved.txt', infile='_solved.txt')
# BaselineProbability.make('data/p-1gram.txt', 1)
# for i in range(1, 6):
# print(f'generate {i}-gram file')
# BaselineProbability.make(
# f'data/p-{i}gram.txt', i, infile='data/baseline-rune-words.txt')
# BaselineProbability.make(
# f'data/p-solved-{i}gram.txt', i, infile='_solved.txt')
# exit()
for fname in [
# '0_welcome', # V8
# 'jpg107-167', # V13
# '0_warning', # invert
# '0_wisdom', # plain
# 'p0-2', # ???
# 'p3-7', # ???
# 'p8-14', # ??? -> kl 11? or 12?
# 'p15-22', # ???
# 'p23-26', # ???
# 'p27-32', # ???
# 'p33-39', # ???
# 'p40-53', # ???
'p54-55', # ???
]:
data = load_data(fname)
# NGramShifter(data).try_all()
# print(VigenereBreaker(data).guess(8, [4,5,6,7,10,11,14,18,20,21,25]))
# print(VigenereBreaker(data).guess(13, [2, 3]))
# continue
if False:
# TODO: add some logic for two keys alternation
bst, kall = test_keylength(data[0::2], kmax=20, wInterrupt=True)
print('best estimate: keylength: {}, score: {:.4f}'.format(*bst))
# decrypt_to(kall, fname, '.0')
bst, kall = test_keylength(data[1::2], kmax=20, wInterrupt=True)
print('best estimate: keylength: {}, score: {:.4f}'.format(*bst))
# decrypt_to(kall, fname, '.1')
else:
bst, kall = test_keylength(data, kmin=1, kmax=32, start=1, wInterrupt=True)
print('best estimate: keylength: {}, score: {:.4f}'.format(*bst))
decrypt_to(kall, fname)
def load_data(fname):
fname = 'pages/{}.txt'.format(fname)
print()
print('loading file:', fname)
with open(fname, 'r') as f:
data = RuneText(re_norune.sub('', f.read()))
data = [(28 - x).index if INVERT else x.index for x in data]
data = RuneText(re_norune.sub('', f.read()))['index']
if INVERT:
data = [28 - x for x in data]
return data
def decrypt_to(variants, infile, prfx=''):
slvr = VigenereSolver()
slvr.input.load(file=f'pages/{infile}.txt')
slvr.output.QUIET = True
slvr.output.COLORS = False
slvr.INTERRUPT = RUNES[ORG_INTERRUPT]
slvr.KEY_INVERT = INVERT
for kl, score, intrpts, key_guess in variants:
outfile = f'out/{infile}.{kl}{prfx}.txt'
with open(outfile, 'w') as f:
f.write(f'{kl}, {score:.4f}, {key_guess}, {intrpts}\n')
slvr.output.file_output = outfile
slvr.INTERRUPT_POS = intrpts
slvr.KEY_DATA = key_guess
slvr.run()
def test_keylength(nums, kmin=1, kmax=32, start=1, wInterrupt=False):
best_score = 0
best_kl = 0
ret = []
for kl in range(kmin, kmax + 1):
if wInterrupt:
score, intrpts = BinTest(nums, kl).test(start=start)
else:
score = Probability.IC_w_keylen(nums, kl)
intrpts = []
print('{} {:.4f}'.format(kl, score))
print(' jump:', intrpts)
key_guess = VigenereBreaker(nums).guess(kl, intrpts)
print(' key:', key_guess)
ret.append((kl, score, intrpts, key_guess))
if score > best_score:
best_score = score
best_kl = kl
return (best_kl, best_score), ret
#########################################
# BaselineProbability : loads and writes ngrams
#########################################
class BaselineProbability(object):
@staticmethod
def translate(): # takes 10s
with open('data/baseline-text.txt', 'r') as f:
src = re.sub('[^A-Z]', ' ', f.read().upper())
# src.replace('\n', '')
with open('data/baseline-rune.txt', 'w') as f:
flag = False
for r in RuneText.from_text(src):
if r.kind != 'r':
if not flag:
f.write('\n')
flag = True
continue
f.write(r.rune)
flag = False
@staticmethod
def make(outfile, gramsize=1, infile='data/baseline-rune.txt'):
res = {x: 0 for x in RUNES}
for x in range(gramsize - 1):
res = {x + y: 0 for x in RUNES for y in res.keys()}
with open(infile, 'r') as f:
data = re_norune.sub('', f.read())
for i in range(len(data) - (gramsize - 1)):
ngram = data[i:i + gramsize]
res[ngram] += 1
with open(outfile, 'w') as f:
for x, y in sorted(res.items(), key=lambda x: -x[1]):
if y != 0:
f.write(f'{x} {y}\n')
@staticmethod
def load_ngram(gram=2):
ret = {}
with open(f'data/p-{gram}gram.txt', 'r') as f:
for line in f.readlines():
r, v = line.split()
ret[r] = int(v)
return ret
@staticmethod
def load():
with open('data/p-1gram.txt', 'r') as f:
lines = f.readlines()
ret = [0] * RCOUNT
for line in lines:
r, v = line.split()
ret[RUNES.index(r)] = int(v)
return ret
#########################################
# Probability : Count runes and simple frequency analysis
#########################################
class Probability(object):
def __init__(self, arr):
self.prob = Probability.count(arr)
self.N = len(arr)
def __init__(self, numstream):
self.prob = [0] * RCOUNT
for r in numstream:
self.prob[r] += 1
self.N = len(numstream)
def IC(self):
X = sum([x * (x - 1) for x in self.prob])
X = sum(x * (x - 1) for x in self.prob)
return X / ((self.N * (self.N - 1)) / 29)
def friedman(self):
return (K_p - K_r) / (self.IC() - K_r)
def similarity(self):
probs = Probability.to_log(self.prob)
return sum((PROB_BASELINE[i] - probs[i]) ** 2 for i in range(RCOUNT))
probs = Probability.normalized(self.prob)
return sum((x - y) ** 2 for x, y in zip(PROB_NORM, probs))
@staticmethod
def count(nums):
res = [0] * RCOUNT
for r in nums:
res[r] += 1
return res
@staticmethod
def to_log(int_prob):
def normalized(int_prob):
total = sum(int_prob)
for i, v in enumerate(int_prob):
int_prob[i] = v / total
# int_prob[i] = math.log(v / total, 10)
return int_prob
return [x / total for x in int_prob] # math.log(x / total, 10)
@staticmethod
def IC_w_keylen(nums, keylen):
@@ -209,193 +61,88 @@ class Probability(object):
#########################################
# BinTest : Split text into Vigenere columns and apply frequency anlysis
# Perform heuristic search on the keylength, interrupts, and key
#########################################
class BinTest(object):
def __init__(self, nums, keylength):
self.keylength = keylength
self.intrpts = [-1]
self.parts = []
for i, n in enumerate(nums):
if n != INV_INTERRUPT:
continue
self.parts.append(nums[self.intrpts[-1] + 1:i]) # drop ᚠ
self.intrpts.append(i)
self.parts.append(nums[self.intrpts[-1] + 1:]) # remainder
self.previous = self.parts[0]
def permutations(self, index, maxdepth=LOOK_AHEAD):
ret = [self.previous]
i = maxdepth
for part in self.parts[index:]:
tmp = []
for x in ret:
tmp.append(x + [INV_INTERRUPT] + part)
tmp.append(x + part) # + INV_INTERRUPT
# TODO: properly append INV_INTERRUPT
# ommitting a rune will slightly favor the shorter text
# however, adding it at the end will shift all remaining runes
ret = tmp
i -= 1
if i <= 0:
if APPEND_REMAINING:
remainder = []
for z in self.parts[index + maxdepth:]:
remainder.extend([INV_INTERRUPT] + z)
for u in range(len(ret)):
ret[u].extend(remainder)
break
return ret
def best_permutation(self, start, maxdepth=LOOK_AHEAD, oneShot=False):
# TODO: better algorithm to select interrupts
permutations = self.permutations(start, maxdepth=maxdepth)
best_i = 0
best_score = 0
# try all permutations for the next x interrupts
for p_i, p in enumerate(permutations):
score = Probability.IC_w_keylen(p, self.keylength)
if score > best_score:
best_score = score
best_i = p_i
if oneShot:
# permutations without interrupt are appended first
# since we only care about the first char, i >= len/2 is sufficient
is_interrupt = best_i >= len(permutations) / 2
return best_score, is_interrupt
else:
found = []
mi = int(math.log(len(permutations), 2))
for i in range(mi):
if best_i & (1 << (mi - i)):
found.append(i + start - 1)
return best_score, found
def join_parts(self, end=None):
ret = []
for part in self.parts[:end]:
ret.append(INV_INTERRUPT)
ret.extend(part)
return ret[1:]
def test(self, start=1):
if start > 1:
if start >= len(self.parts):
start = len(self.parts) - 1
self.previous = self.join_parts(self.intrpts[start])
# # enum all possible permutation. But only once
# return self.best_permutation(start=start, maxdepth=12, oneShot=True)
# # calculate IoC without interrupts
# return Probability.IC_w_keylen(self.join_parts(), self.keylength), []
if start >= len(self.intrpts):
return Probability.IC_w_keylen(self.previous, self.keylength), []
found = []
best = 0
for i in range(start, len(self.intrpts)):
score, is_interrupt = self.best_permutation(i)
if score > best:
best = score
if is_interrupt:
found.append(i)
else:
self.previous += [INV_INTERRUPT]
self.previous.extend(self.parts[i])
return best, found
def enum_keylengths(nums, fn_interrupt, fn_keyguess, kmin=1, kmax=32):
best_s = 0
best_kl = 0
iguess = SearchInterrupt(nums, INV_INTERRUPT)
print('interrupt:', ORG_INTERRUPT, 'count:', len(iguess.stops))
for kl in range(kmin, kmax + 1):
score, intrpts = fn_interrupt(kl, iguess)
print('{} {:.4f}'.format(kl, score))
key_guess = []
for i, skips in enumerate(intrpts):
key = fn_keyguess(kl, iguess.join(skips))
yield kl, score, i, skips, key
key_guess.append(key)
intrpts[i] = iguess.to_occurrence_index(skips)
print(' skip:', intrpts)
print(' key:', key_guess)
if score > best_s:
best_s = score
best_kl = kl
print(f'best estimate: keylength: {best_kl}, score: {best_s:.4f}')
#########################################
# VigenereBreaker : Given a fixed keylength, shift values around
#########################################
def fn_break_vigenere(fname, data):
def fn_similarity(x):
return Probability(x).similarity()
class VigenereBreaker(object):
def __init__(self, nums):
self.nums = nums
def fn_irp(kl, iguess):
def fn_IoC(x):
return Probability.IC_w_keylen(x, kl)
return iguess.sequential(fn_IoC, startAt=0, maxdepth=9)
# return iguess.genetic(fn_IoC, topDown=False, maxdepth=4)
# return fn_IoC(iguess.join()), [[]] # without interrupts
def guess(self, keylength, interrupts=[]):
intup = 0
ii = 0
bins = [[] for _ in range(keylength)]
for i, n in enumerate(self.nums):
if n == INV_INTERRUPT:
intup += 1
if intup in interrupts:
continue
bins[ii % keylength].append(n)
ii += 1
found = []
for data in bins:
shifted = [[] for _ in range(29)]
for x in data:
for i in range(29):
shifted[i].append((x - i) % 29)
bi = -1
bs = 9999999
for i, test in enumerate(shifted):
score = Probability(test).similarity()
if score < bs:
bs = score
bi = i
found.append(bi)
return found
def fn_key(kl, data):
return GuessVigenere(data).guess(kl, fn_similarity)
#########################################
# NGramShifter : Shift fixed with runes around
#########################################
class NGramShifter(object):
def __init__(self, data):
self.data = data
self.variants = [''.join(RUNES[(y - x) % 29] for y in data)
for x in range(29)]
def try_all(self, gramsize=3):
for i in range(gramsize):
print('offset:', i)
NGramShifter(self.data[i:]).guess(gramsize)
print()
def guess(self, keylength, interrupts=[]):
prob = BaselineProbability.load_ngram(keylength)
maxlen = len(self.data) - len(self.data) % keylength
res = [[] for _ in range(maxlen // keylength)]
for v, data in enumerate(self.variants):
for i in range(0, maxlen, keylength):
gram = data[i:i + keylength]
try:
value = prob[gram]
except KeyError:
value = 0
res[i // keylength].append((v, value))
for arr in res:
arr.sort(key=lambda x: -x[1])
fillup = ' ' * (2 * keylength + 1)
interrupts = [i for i, x in enumerate(self.data) if x == INV_INTERRUPT]
for i in range(29):
txt = ''
for u, x in enumerate(res):
u *= keylength
tt = ''
if x[i][1] > 0:
for o in range(u, u + keylength):
if o in interrupts:
tt += '|' # mark with preceding
tt += Rune(r=self.variants[x[i][0]][o]).text
txt += tt + fillup[len(tt):]
txt = txt.rstrip()
if txt:
print(txt)
slvr = VigenereSolver()
slvr.input.load(file=f'pages/{fname}.txt')
slvr.output.QUIET = True
slvr.output.COLORS = False
slvr.INTERRUPT = ORG_INTERRUPT
slvr.KEY_INVERT = INVERT
for kl, score, i, skips, key in enum_keylengths(data, fn_irp, fn_key,
kmin=1, kmax=32):
outfile = f'out/{fname}.{score:.3f}.{kl}.{i}.txt'
with open(outfile, 'w') as f:
f.write(f'{kl}, {score:.4f}, {key}, {skips}\n')
slvr.output.file_output = outfile
slvr.INTERRUPT_POS = skips
slvr.KEY_DATA = key
slvr.run()
#########################################
# main
#########################################
PROB_BASELINE = Probability.to_log(BaselineProbability.load())
PROB_INT = [0] * RCOUNT
for k, v in NGrams.load().items():
PROB_INT[RUNES.index(k)] = v
PROB_NORM = Probability.normalized(PROB_INT)
K_r = 1 / 29 # 0.034482758620689655
K_p = sum([x ** 2 for x in PROB_BASELINE]) # 0.06116195419412538
K_p = sum(x ** 2 for x in PROB_INT) # 0.06116195419412538
if __name__ == '__main__':
main()
for fname in [
# '0_welcome', # V8
# 'jpg107-167', # V13
# '0_warning', # invert
# '0_wisdom', # plain
# 'p0-2', # ???
# 'p3-7', # ???
# 'p8-14', # ??? -> kl 11? or 12?
# 'p15-22', # ???
# 'p23-26', # ???
# 'p27-32', # ???
# 'p33-39', # ???
# 'p40-53', # ???
'p54-55', # ???
]:
data = load_data(fname)
# NGramShifter().guess(data, RUNES[INV_INTERRUPT])
fn_break_vigenere(fname, data)