make elliptic curves available to solver.py

This commit is contained in:
relikd
2021-01-16 00:27:18 +01:00
parent 0b90aafd59
commit 7e363a670a
5 changed files with 195 additions and 66 deletions

78
data/seq_moebius.txt Normal file
View File

@@ -0,0 +1,78 @@
1
-1
-1
0
-1
1
-1
0
0
1
-1
0
-1
1
1
0
-1
0
-1
0
1
1
-1
0
0
1
0
0
-1
-1
-1
0
1
1
1
0
-1
1
1
0
-1
-1
-1
0
0
1
-1
0
0
0
1
0
-1
0
1
0
1
1
-1
0
-1
1
0
0
1
-1
-1
0
1
-1
-1
0
-1
1
0
0
1
-1

View File

@@ -1,4 +1,5 @@
0
1
4
6
8

46
lib.py
View File

@@ -7,6 +7,8 @@ import math
def is_prime(num):
if isinstance(num, str):
num = int(num)
if num in [2, 3, 5]:
return True
if num & 1 and num % 5 > 0:
for i in range(2, math.floor(math.sqrt(num)) + 1):
if i & 1 and (num % i) == 0:
@@ -24,3 +26,47 @@ def rev(num): # or int(str(num)[::-1])
revs = (revs * 10) + remainder
num = num // 10
return revs
def power(x, y, p):
res = 1
x %= p
while (y > 0):
if (y & 1):
res = (res * x) % p
y = y >> 1
x = (x * x) % p
return res
def sqrtNormal(n, p):
n %= p
for x in range(2, p):
if ((x * x) % p == n):
return x
return None
# Assumption: p is of the form 3*i + 4 where i >= 1
def sqrtFast(n, p):
if (p % 4 != 3):
# raise ValueError('Invalid Input')
return sqrtNormal(n, p)
# Try "+(n ^ ((p + 1)/4))"
n = n % p
x = power(n, (p + 1) // 4, p)
if ((x * x) % p == n):
return x
# Try "-(n ^ ((p + 1)/4))"
x = p - x
if ((x * x) % p == n):
return x
return None
def elliptic_curve(x, a, b, r):
y2 = (x ** 3 + a * x + b) % r
y = sqrtFast(y2, r) if y2 > 0 else 0
if y is None:
return None, None
return y, -y % r

View File

@@ -1,79 +1,74 @@
#!/usr/bin/env python3
import sys
if True:
sys.path.append('..')
import lib as LIB
try:
from PIL import Image, ImageDraw
IMG_OUT = True
except ModuleNotFoundError:
IMG_OUT = False
def power(x, y, p):
res = 1
x %= p
while (y > 0):
if (y & 1):
res = (res * x) % p
y = y >> 1
x = (x * x) % p
return res
ALL_OF_THEM = []
OFFSET = 0
SEPERATORS = []
PRIMES_RED = False
# Assumption: p is of the form 3*i + 4 where i >= 1
def sqrtFast(n, p):
if (p % 4 != 3):
raise ValueError('Invalid Input')
# Try "+(n ^ ((p + 1)/4))"
n = n % p
x = power(n, (p + 1) // 4, p)
if ((x * x) % p == n):
return x
# Try "-(n ^ ((p + 1)/4))"
x = p - x
if ((x * x) % p == n):
return x
return None
def write_image(dots, name, h, sz=0, width=None):
if width is None:
width = h
image = Image.new('RGB', (width, h))
draw = ImageDraw.Draw(image)
draw.rectangle((0, 0, width, h), fill='white')
for x, p1, p2, pr in dots:
z1 = h - 1 - p1
z2 = h - 1 - p2
color = 'red' if PRIMES_RED and pr else 'black'
draw.rectangle((x - sz, z1 - sz, x + sz, z1 + sz), fill=color)
draw.rectangle((x - sz, z2 - sz, x + sz, z2 + sz), fill=color)
for x in SEPERATORS:
draw.rectangle((x, 0, x + 1, h), fill='gray')
image.save(name, 'PNG')
def sqrtNormal(n, p):
n %= p
for x in range(2, p):
if ((x * x) % p == n):
return x
return None
def elliptic_curve(a, b, r):
print(f'generate curve: a={a}, b={b}, r={r}')
if IMG_OUT:
image1 = Image.new('RGB', (r, r))
draw1 = ImageDraw.Draw(image1)
draw1.rectangle((0, 0, r, r), fill='white')
image2 = Image.new('RGB', (r, r))
draw2 = ImageDraw.Draw(image2)
draw2.rectangle((0, 0, r, r), fill='white')
sqrtFn = sqrtNormal if (r % 4 != 3) else sqrtFast
def draw_curve(a, b, r):
global ALL_OF_THEM, OFFSET, SEPERATORS
# print(f'generate curve: a={a}, b={b}, r={r}')
img_dots = []
txt = ''
for x in range(r):
y2 = (x ** 3 + a * x + b) % r
u2 = sqrtFn(y2, r) if y2 > 0 else 0
if u2 is not None:
z1 = r - 1 - u2
z2 = r - 1 - (-u2 % r)
print(x, y2, -y2 % r)
txt += f'{x} {y2} {-y2 % r}\n'
if IMG_OUT:
draw1.rectangle((x, z1, x, z1), fill='black')
draw1.rectangle((x, z2, x, z2), fill='black')
draw2.rectangle((x - 2, z1 - 2, x + 2, z1 + 2), fill='black')
draw2.rectangle((x - 2, z2 - 2, x + 2, z2 + 2), fill='black')
p1, p2 = LIB.elliptic_curve(x, a, b, r)
if p1 is not None:
# print(x, p1, p2)
txt += f'{x} {p1} {p2}\n'
# img_dots.append((x + OFFSET, p1, p2, LIB.is_prime(x)))
if LIB.is_prime(x):
img_dots.append((x + OFFSET, p1, p2, True))
with open(f'ec-a{a}-b{b}-r{r}.txt', 'w') as f:
f.write(txt)
if IMG_OUT:
print('writing image output')
image1.save(f'ec-a{a}-b{b}-r{r}-pp.png', 'PNG')
image2.save(f'ec-a{a}-b{b}-r{r}-lg.png', 'PNG')
print()
# with open(f'ec-a{a}-b{b}-r{r}.txt', 'w') as f:
# f.write(txt)
ALL_OF_THEM.append(((a, b, r), img_dots))
OFFSET += len(img_dots) + 10
SEPERATORS.append(OFFSET - 6)
# if IMG_OUT:
# print(f'writing image output (a={a}, b={b}, r={r})')
# write_image(img_dots, f'ec-a{a}-b{b}-r{r}-pp.png', r)
# write_image(img_dots, f'ec-a{a}-b{b}-r{r}-lg.png', r, sz=2)
# print()
elliptic_curve(a=149, b=263, r=3299)
r = 3299
t = [2, 3, 5, 7, 13, 23, 43, 79, 149, 263, 463, 829, 1481, 2593]
# t = [2, 3]
for x in t:
ALL_OF_THEM = []
SEPERATORS = []
OFFSET = 0
for y in t:
draw_curve(a=x, b=y, r=r)
print(f'writing image output ({x}@{t[0]}-{t[-1]} r={r}) {OFFSET}x{r}')
just_all = [z for x, y in ALL_OF_THEM for z in y]
write_image(just_all, f'ec-{x}-r{r}.png', r, sz=3, width=OFFSET)

View File

@@ -1,6 +1,7 @@
#!/usr/bin/env python3
from RuneSolver import VigenereSolver, SequenceSolver
from RuneText import Rune, RuneText
from lib import elliptic_curve
import sys
@@ -14,6 +15,7 @@ PRIMES_3301 = load_sequence_file('data/seq_primes_3301.txt')
NOT_PRIMES = load_sequence_file('data/seq_not_primes.txt')
FIBONACCI = load_sequence_file('data/seq_fibonacci.txt')
LUCAS = load_sequence_file('data/seq_lucas_numbers.txt')
MOEBIUS = load_sequence_file('data/seq_moebius.txt')
def print_all_solved():
@@ -77,17 +79,23 @@ def try_totient_on_unsolved():
slvr = SequenceSolver()
slvr.output.QUIET = True
slvr.output.BREAK_MODE = '' # disable line breaks
# for uuu in ['54-55']:
# for uuu in ['15-22']:
for uuu in ['0-2', '3-7', '8-14', '15-22', '23-26', '27-32', '33-39', '40-53', '54-55']:
print()
print(uuu)
with open(f'pages/p{uuu}.txt', 'r') as f:
slvr.input.load(RuneText(f.read()[:110]))
slvr.input.load(RuneText(f.read()[:15]))
# alldata = slvr.input.runes_no_whitespace() + [Rune(i=29)]
def b60(x):
v = x % 60
return v if v < 29 else 60 - v
def ec(r, i):
p1, p2 = elliptic_curve(i, 149, 263, 3299)
if p1 is None:
return r.index
return r.index + p1 % 29
# for p in PRIMES[:500]:
# print(p)
# for z in range(29):
@@ -103,7 +111,8 @@ def try_totient_on_unsolved():
# slvr.FN = lambda i, r: Rune(i=b60(r.prime) + z % 29)
# slvr.FN = lambda i, r: Rune(i=((r.prime + alldata[i + 1].prime) + z) % 60 // 2)
# slvr.FN = lambda i, r: Rune(i=(3301 * r.index + z) % 29)
slvr.FN = lambda i, r: Rune(i=(67 * r.index + z) % 29)
slvr.FN = lambda i, r: Rune(i=(ec(r, i) + z) % 29)
# slvr.FN = lambda i, r: Rune(i=(r.prime - PRIMES[FIBONACCI[i]] + z) % 29)
# slvr.FN = lambda i, r: Rune(i=(r.prime ** i + z) % 29)
slvr.run()