normalized english targeted IoC
This commit is contained in:
@@ -12,14 +12,13 @@ def normalized_probability(int_prob):
|
||||
RUNES = 'ᚠᚢᚦᚩᚱᚳᚷᚹᚻᚾᛁᛄᛇᛈᛉᛋᛏᛒᛖᛗᛚᛝᛟᛞᚪᚫᚣᛡᛠ'
|
||||
re_norune = re.compile('[^' + RUNES + ']')
|
||||
PROB_INT = [0] * 29
|
||||
# for k, v in NGrams.load(1, '-no-e').items(): # 1.8271530001197518
|
||||
for k, v in NGrams.load().items(): # 1.7736851725202398
|
||||
for k, v in NGrams.load(1, '').items(): # '-no-e', '-solved'
|
||||
PROB_INT[RUNES.index(k)] = v
|
||||
PROB_NORM = normalized_probability(PROB_INT)
|
||||
K_r = 1 / 29 # 0.034482758620689655
|
||||
K_p = sum(x ** 2 for x in PROB_INT) # 0.06116195419412538
|
||||
# Target IoC. peace and war: 1.77368517 solved: 1.78021503, no e: 1.82715300
|
||||
N_total = (sum(PROB_INT) * (sum(PROB_INT) - 1)) / 29
|
||||
PROB_TARGET = sum(x * (x - 1) for x in PROB_INT) / N_total
|
||||
TARGET_IOC = sum(x * (x - 1) for x in PROB_INT) / N_total
|
||||
# TARGET_IOC = 1.78
|
||||
|
||||
|
||||
#########################################
|
||||
@@ -37,9 +36,6 @@ class Probability(object):
|
||||
X = sum(x * (x - 1) for x in self.prob)
|
||||
return X / ((self.N * (self.N - 1)) / 29)
|
||||
|
||||
def friedman(self):
|
||||
return (K_p - K_r) / (self.IC() - K_r)
|
||||
|
||||
def similarity(self):
|
||||
probs = normalized_probability(self.prob)
|
||||
return sum((x - y) ** 2 for x, y in zip(PROB_NORM, probs))
|
||||
@@ -49,6 +45,12 @@ class Probability(object):
|
||||
val = sum(Probability(nums[x::keylen]).IC() for x in range(keylen))
|
||||
return val / keylen
|
||||
|
||||
@staticmethod
|
||||
def target_diff(nums, keylen, target_ioc=TARGET_IOC):
|
||||
val = sum(abs(Probability(nums[x::keylen]).IC() - target_ioc)
|
||||
for x in range(keylen))
|
||||
return 1 - (val / keylen)
|
||||
|
||||
|
||||
#########################################
|
||||
# load page and convert to indices for faster access
|
||||
|
||||
@@ -88,7 +88,7 @@ class SearchInterrupt(object):
|
||||
found = [[]]
|
||||
|
||||
def best_in_one(i, depth, prefix=[]):
|
||||
best_s = 0
|
||||
best_s = -8
|
||||
best_p = [] # [match, match, ...]
|
||||
irp = self.stops[i:i + depth]
|
||||
for x in itertools.product([False, True], repeat=depth):
|
||||
@@ -103,7 +103,7 @@ class SearchInterrupt(object):
|
||||
return best_p, best_s
|
||||
|
||||
def best_in_all(i, depth):
|
||||
best_s = 0
|
||||
best_s = -8
|
||||
best_p = [] # [(prefix, [match, match, ...]), ...]
|
||||
for pre in found:
|
||||
parts, score = best_in_one(i, depth, prefix=pre)
|
||||
@@ -148,7 +148,6 @@ class SearchInterrupt(object):
|
||||
# If no better score found, increment number of testing bits and repeat.
|
||||
# Either start with all interrupts set (topDown) or none set.
|
||||
def genetic(self, score_fn, topDown=False, maxdepth=3):
|
||||
best = 0
|
||||
current = self.stops if topDown else []
|
||||
|
||||
def evolve(lvl):
|
||||
|
||||
@@ -22,9 +22,11 @@ class InterruptDB(object):
|
||||
self.iguess = SearchInterrupt(data, interrupt)
|
||||
self.irp_count = len(self.iguess.stops)
|
||||
|
||||
def make(self, keylen):
|
||||
def make(self, dbname, name, keylen):
|
||||
def fn(x):
|
||||
return Probability.IC_w_keylen(x, keylen)
|
||||
return Probability.target_diff(x, keylen) # used in db_norm
|
||||
# return Probability.IC_w_keylen(x, keylen) # used in db_high
|
||||
|
||||
if keylen == 0:
|
||||
keylen = 1
|
||||
score, skips = fn(self.iguess.join()), [[]] # without interrupts
|
||||
@@ -33,19 +35,18 @@ class InterruptDB(object):
|
||||
# score, skips = self.iguess.genetic(fn, topDown=False, maxdepth=4)
|
||||
for i, interrupts in enumerate(skips):
|
||||
skips[i] = self.iguess.to_occurrence_index(interrupts)
|
||||
|
||||
for nums in skips:
|
||||
self.write(
|
||||
name, score, self.irp, self.irp_count, keylen, nums, dbname)
|
||||
return score, skips
|
||||
|
||||
def make_keylength(self, name, keylen, dbname='db_main'):
|
||||
score, interrupts = self.make(keylen)
|
||||
for nums in interrupts:
|
||||
self.write(name, score, self.irp, self.irp_count, keylen, nums, dbname)
|
||||
return score, interrupts
|
||||
|
||||
def find_secondary(self, name, keylen, threshold, dbname='db_main'):
|
||||
def make_secondary(self, dbname, name, keylen, threshold):
|
||||
scores = []
|
||||
|
||||
def fn(x):
|
||||
score = Probability.IC_w_keylen(x, keylen)
|
||||
score = Probability.target_diff(x, keylen) # used in db_norm
|
||||
# score = Probability.IC_w_keylen(x, keylen) # used in db_high
|
||||
if score >= threshold:
|
||||
scores.append(score)
|
||||
return 1
|
||||
@@ -59,11 +60,12 @@ class InterruptDB(object):
|
||||
# exclude best results, as they are already present in the main db
|
||||
filtered = [x for x in ret if x[0] < bestscore]
|
||||
for score, nums in filtered:
|
||||
self.write(name, score, self.irp, self.irp_count, keylen, nums, dbname)
|
||||
self.write(
|
||||
name, score, self.irp, self.irp_count, keylen, nums, dbname)
|
||||
return len(filtered)
|
||||
|
||||
@staticmethod
|
||||
def load(dbname='db_main'):
|
||||
def load(dbname):
|
||||
if not os.path.isfile(f'InterruptDB/{dbname}.txt'):
|
||||
return {}
|
||||
ret = {}
|
||||
@@ -142,11 +144,11 @@ class InterruptIndices(object):
|
||||
#########################################
|
||||
|
||||
class InterruptToWeb(object):
|
||||
def __init__(self, template):
|
||||
def __init__(self, dbname, template='InterruptDB/template.html'):
|
||||
self.template = template
|
||||
self.indices = InterruptIndices()
|
||||
self.scores = {}
|
||||
db = InterruptDB.load()
|
||||
db = InterruptDB.load(dbname)
|
||||
for k, v in db.items():
|
||||
for irpc, score, irp, kl, nums in v:
|
||||
if k not in self.scores:
|
||||
@@ -167,7 +169,10 @@ class InterruptToWeb(object):
|
||||
trh = '<tr class="rotate"><th></th>'
|
||||
trtotal = '<tr class="small"><th>Total</th>'
|
||||
trd = [f'<tr><th>{x}</th>' for x in RUNES]
|
||||
del_row = [True] * 29
|
||||
for name in FILES_ALL:
|
||||
if name not in self.scores:
|
||||
continue
|
||||
total = self.indices.total(name)
|
||||
trh += f'<th><div>{name}</div></th>'
|
||||
trtotal += f'<td>{total}</td>'
|
||||
@@ -176,6 +181,7 @@ class InterruptToWeb(object):
|
||||
if not scrs:
|
||||
trd[i] += '<td>–</td>'
|
||||
continue
|
||||
del_row[i] = False
|
||||
worst_irpc = min([x[1] for x in scrs])
|
||||
if worst_irpc == 0:
|
||||
if max([x[1] for x in scrs]) != 0:
|
||||
@@ -188,23 +194,28 @@ class InterruptToWeb(object):
|
||||
trtotal += '</tr>\n'
|
||||
for i in range(29):
|
||||
trd[i] += '</tr>\n'
|
||||
if del_row[i]:
|
||||
trd[i] = ''
|
||||
return f'<table>{trh}{"".join(trd)}{trtotal}</table>'
|
||||
|
||||
def table_interrupt(self, irp):
|
||||
def table_interrupt(self, irp, pmin=1.25, pmax=1.65):
|
||||
maxkl = max(len(x[irp]) for x in self.scores.values())
|
||||
trh = '<tr class="rotate"><th></th>'
|
||||
trbest = '<tr class="small"><th>best</th>'
|
||||
trd = [f'<tr><th>{x}</th>' for x in range(maxkl)]
|
||||
for name in FILES_ALL:
|
||||
trh += f'<th><div>{name}</div></th>'
|
||||
maxscore = 0
|
||||
bestkl = -1
|
||||
try:
|
||||
klarr = self.scores[name][irp]
|
||||
except KeyError:
|
||||
continue
|
||||
trh += f'<th><div>{name}</div></th>'
|
||||
for kl, (score, _) in enumerate(klarr):
|
||||
trd[kl] += f'<td{self.cls(score, 1.25, 1.65)}>{score:.2f}</td>'
|
||||
if score < 0:
|
||||
trd[kl] += f'<td{self.cls(0)}>–</td>'
|
||||
else:
|
||||
trd[kl] += f'<td{self.cls(score, pmin, pmax)}>{score:.2f}</td>'
|
||||
if score > maxscore:
|
||||
maxscore = score
|
||||
bestkl = kl
|
||||
@@ -215,18 +226,20 @@ class InterruptToWeb(object):
|
||||
trd[i] += '</tr>\n'
|
||||
return f'<table>{trh}{"".join(trd[1:])}{trbest}</table>'
|
||||
|
||||
def make(self, outfile, template='InterruptDB/template.html'):
|
||||
def make(self, outfile, pmin=1.25, pmax=1.65):
|
||||
with open(self.template, 'r') as f:
|
||||
html = f.read()
|
||||
nav = ''
|
||||
for i, r in enumerate(RUNES):
|
||||
nav += f'<a href="#tb-i{i}">{r}</a>\n'
|
||||
html = html.replace('__NAVIGATION__', nav)
|
||||
html = html.replace('__TAB_RELIABLE__', self.table_reliable())
|
||||
txt = ''
|
||||
for i in range(29):
|
||||
has_entries = any(True for x in self.scores.values() if x[i])
|
||||
if not has_entries:
|
||||
continue
|
||||
nav += f'<a href="#tb-i{i}">{RUNES[i]}</a>\n'
|
||||
txt += f'<h3 id="tb-i{i}">Interrupt {i}: <b>{RUNES[i]}</b></h3>'
|
||||
txt += self.table_interrupt(i)
|
||||
txt += self.table_interrupt(i, pmin, pmax)
|
||||
html = html.replace('__NAVIGATION__', nav)
|
||||
html = html.replace('__TAB_RELIABLE__', self.table_reliable())
|
||||
html = html.replace('__INTERRUPT_TABLES__', txt)
|
||||
with open(outfile, 'w') as f:
|
||||
f.write(html)
|
||||
@@ -241,7 +254,8 @@ def create_initial_db(dbname, minkl=1, maxkl=32, max_irp=20, irpset=range(29)):
|
||||
oldValues = {k: set((a, b, c) for a, _, b, c, _ in v)
|
||||
for k, v in oldDB.items()}
|
||||
for irp in irpset: # interrupt rune index
|
||||
for name in FILES_UNSOLVED: # filename
|
||||
# for name in FILES_UNSOLVED:
|
||||
for name in FILES_ALL:
|
||||
fname = f'pages/{name}.txt'
|
||||
data = load_indices(fname, irp, maxinterrupt=max_irp)
|
||||
db = InterruptDB(data, irp)
|
||||
@@ -250,12 +264,12 @@ def create_initial_db(dbname, minkl=1, maxkl=32, max_irp=20, irpset=range(29)):
|
||||
if (db.irp_count, irp, keylen) in oldValues.get(name, []):
|
||||
print(f'{keylen}: skipped.')
|
||||
continue
|
||||
score, interrupts = db.make_keylength(name, keylen, dbname)
|
||||
score, interrupts = db.make(dbname, name, keylen)
|
||||
print(f'{keylen}: {score:.4f}, solutions: {len(interrupts)}')
|
||||
|
||||
|
||||
def find_secondary_solutions(dbname, max_irp=20, threshold=1.4):
|
||||
oldDB = InterruptDB.load()
|
||||
def find_secondary_solutions(db_in, db_out, threshold=0.75, max_irp=20):
|
||||
oldDB = InterruptDB.load(db_in)
|
||||
search_set = set()
|
||||
for name, arr in oldDB.items():
|
||||
if name not in FILES_UNSOLVED:
|
||||
@@ -270,12 +284,14 @@ def find_secondary_solutions(dbname, max_irp=20, threshold=1.4):
|
||||
print('load:', fname, 'interrupt:', irp, 'keylen:', kl)
|
||||
data = load_indices(fname, irp, maxinterrupt=max_irp)
|
||||
db = InterruptDB(data, irp)
|
||||
c = db.find_secondary(name, kl, threshold,
|
||||
db_path=f'InterruptDB/{dbname}.txt')
|
||||
c = db.make_secondary(db_out, name, kl, threshold)
|
||||
print('found', c, 'additional solutions')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# find_secondary_solutions('db_secondary')
|
||||
# create_initial_db('db_main', minkl=1, maxkl=32, max_irp=20)
|
||||
InterruptToWeb('InterruptDB/template.html').make('InterruptDB/index.html')
|
||||
# find_secondary_solutions('db_high', 'db_high_secondary', threshold=1.4)
|
||||
# find_secondary_solutions('db_norm', 'db_norm_secondary', threshold=0.55)
|
||||
create_initial_db('db_norm', minkl=1, maxkl=32, max_irp=20, irpset=[0])
|
||||
# InterruptToWeb('db_high').make('InterruptDB/index_high.html')
|
||||
# InterruptToWeb('db_norm').make(
|
||||
# 'InterruptDB/index_norm.html', pmin=0.40, pmax=0.98)
|
||||
|
||||
8
InterruptDB/README.md
Normal file
8
InterruptDB/README.md
Normal file
@@ -0,0 +1,8 @@
|
||||
|
||||
- `db_high` : Find IoC combinations that are as high as possible
|
||||
- `db_high_secondary` : List of non-optimal solutions with score greater than 1.4
|
||||
- `db_norm` : Find IoC combinations that are close to normal english (1.7737)
|
||||
- `db_norm_secondary` : List of non-optimal solutions with score greater than 0.55
|
||||
- `db_indices` : Just each index of each rune for all chapters
|
||||
|
||||
_Note:_ All secondary dbs do not include the solutions from the original db.
|
||||
@@ -20053,3 +20053,85 @@ p57_parable|0|1.16667|28|29|
|
||||
p57_parable|0|3.38333|28|30|
|
||||
p57_parable|0|2.49462|28|31|
|
||||
p57_parable|0|1.20833|28|32|
|
||||
p0-2|19|0.26071|0|1|1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19
|
||||
p0-2|19|0.33526|0|2|2,3,5,6,8,10,11,12,14,17,18,19
|
||||
p0-2|19|0.38921|0|3|1,3,4,5,7,9,13,14,15,16,18,19
|
||||
p0-2|19|0.36146|0|4|2,4,5,6,8,9,11,12,13,14
|
||||
p0-2|19|0.40279|0|5|1,2,3,4,5,9,12,13,19
|
||||
p0-2|19|0.40496|0|6|1,2,5,7,8,11,14,15,16,17,18,19
|
||||
p0-2|19|0.53194|0|7|1,3,5,6,7,9,11,13,14,15,17,18,19
|
||||
p0-2|19|0.37811|0|8|2,3,4,5,10,14,15,16,17,18,19
|
||||
p0-2|19|0.49048|0|9|1,2,3,7,9,12,13,15,16,17
|
||||
p0-2|19|0.46958|0|10|1,2,3,4,5,9,12,13,19
|
||||
p0-2|19|0.51545|0|11|2,4,5,8,9,10,12
|
||||
p0-2|19|0.54774|0|12|1,2,5,8,9,10,13,14,15,16,18,19
|
||||
p0-2|19|0.46001|0|13|1,3,4,5,7,8,9,10,11,12,13,14,15,16,19
|
||||
p0-2|19|0.56722|0|14|1,4,5,6,8,12,15,17,18,19
|
||||
p0-2|19|0.54743|0|15|1,3,4,5,7,9,13,14,15,16,17
|
||||
p0-2|19|0.47352|0|16|1,4,6,7,12,13,14,15,16,17,19
|
||||
p0-2|19|0.63488|0|17|1,2,5,6,8,9,12,15,16,17,19
|
||||
p0-2|19|0.61982|0|18|1,2,5,8,9,10,13,14,15,16,18,19
|
||||
p0-2|19|0.61982|0|18|1,2,4,8,9,10,13,14,15,16,18,19
|
||||
p0-2|19|0.48753|0|19|2,3,4,5,9,11,12,13,14,16
|
||||
p0-2|19|0.54827|0|20|1,2,5,8,10,11,12,13,15,17,18,19
|
||||
p0-2|19|0.59112|0|21|1,4,5,6,7,12,14,15,16
|
||||
p0-2|19|0.59112|0|21|1,3,4,6,7,12,14,15,16
|
||||
p0-2|19|0.62958|0|22|2,4,5,6,9,10,12
|
||||
p0-2|19|0.61204|0|23|1,2,4,5,6,7,8,9,11,13,14,15,16,17,18,19
|
||||
p0-2|19|0.65440|0|24|1,2,5,6,7,12,13,14,15,16,18,19
|
||||
p0-2|19|0.56584|0|25|2,3,4,5,6,12,15,18,19
|
||||
p0-2|19|0.55906|0|26|1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,18
|
||||
p0-2|19|0.57973|0|27|1,7,11,12,14,15,16,17,19
|
||||
p0-2|19|0.67745|0|28|2,3,5,6,8,9,11,13,14,15,17,18,19
|
||||
p0-2|19|0.67745|0|28|1,3,5,6,8,9,11,13,14,15,17,18,19
|
||||
p0-2|19|0.69884|0|29|5,7,8,10,11,12,14,19
|
||||
p0-2|19|0.56140|0|30|1,2,6,8,10,11,17,18,19
|
||||
p0-2|19|0.62518|0|31|2,3,4,5,6,7,8,12,13,15,18
|
||||
p0-2|19|0.61315|0|32|1,2,3,4,5,6,7,8,9,10,11,12,13,14
|
||||
p3-7|19|0.25941|0|1|1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19
|
||||
p3-7|19|0.29231|0|2|1,3,4,5,6,7,8,9,10,11,14,15,16,17,18
|
||||
p3-7|19|0.34443|0|3|1,2,3,7,10,11,12,13,14,15,16,17,18,19
|
||||
p3-7|19|0.34443|0|3|1,2,3,6,10,11,12,13,14,15,16,17,18,19
|
||||
p3-7|19|0.30864|0|4|1,4,6,7,8,9,10,11,13,15,16
|
||||
p3-7|19|0.33572|0|5|1,2,3,4,5,6,9,13
|
||||
p3-7|19|0.34790|0|6|1,2,4,6,10,11,13,16,17,18,19
|
||||
p3-7|19|0.34503|0|7|1,2,3,7,9,10,11,12,13
|
||||
p3-7|19|0.37105|0|8|3,4,5,6,7,9,10,14,16,17
|
||||
p3-7|19|0.43444|0|9|1,2,4,7,12,14,15,16,17,18,19
|
||||
p3-7|19|0.37333|0|10|4,6,7,8,9,10,11,17
|
||||
p3-7|19|0.40613|0|11|2,6,9,11,14,15,16,17
|
||||
p3-7|19|0.44041|0|12|3,4,5,6,7,8,9,14,17,18
|
||||
p3-7|19|0.43086|0|13|4,5,6,7,8,14,17,18
|
||||
p3-7|19|0.39171|0|14|1,2,4,5,14,16,17,18,19
|
||||
p3-7|19|0.43583|0|15|1,2,3,7,9,14,15,16,17,18,19
|
||||
p3-7|19|0.46407|0|16|1,2,4,7,9,13,14,16,17,18,19
|
||||
p3-7|19|0.42702|0|17|2,3,4,5,7,8,9,10,11,12,14,15,17
|
||||
p3-7|19|0.45998|0|18|1,2,3,4,13,14,15,18,19
|
||||
p3-7|19|0.37329|0|19|1,2,4,6,7,8,10,15
|
||||
p3-7|19|0.46933|0|20|3,4,5,8,9,10,11,16
|
||||
p3-7|19|0.38142|0|21|1,2,3,6,7,8,9,10,11,12,13,14,15,16,17,18
|
||||
p3-7|19|0.46694|0|22|1,4,5,9,10,11,12,13,16
|
||||
p3-7|19|0.50586|0|23|1,2,7,8,9,18
|
||||
p3-7|19|0.51334|0|24|2,4,5,7,8,9,10,13,16,17
|
||||
p3-7|19|0.50971|0|25|4,6,7,8,9,10,12,14
|
||||
p3-7|19|0.50971|0|25|3,6,7,8,9,10,12,14
|
||||
p3-7|19|0.57536|0|26|2,3,6,7,8,14,17,18
|
||||
p3-7|19|0.54136|0|27|1,2,5,6,8,9,10,11,12,14,17,18,19
|
||||
p3-7|19|0.42383|0|28|1,3,4,7,8,18
|
||||
p3-7|19|0.42383|0|28|1,3,4,6,8,18
|
||||
p3-7|19|0.44190|0|29|1,2,3,4,6,7,9,10,11,15,16,17,18,19
|
||||
p3-7|19|0.56560|0|30|3,4,5,8,9,10,11,15
|
||||
p3-7|19|0.45339|0|31|3,4,5,6,7,8,9,10,11,12,14,15,16,17,19
|
||||
p3-7|19|0.56926|0|32|3,4,5,6,8,9,10,15,16,17,18,19
|
||||
p8-14|19|0.24655|0|1|1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19
|
||||
p8-14|19|0.29691|0|2|3,5,6,9,10,12,14,15,16,17,19
|
||||
p8-14|19|0.29691|0|2|3,5,6,9,10,11,14,15,16,17,19
|
||||
p8-14|19|0.29828|0|3|1,3,4,6,7,8,9,10,13,14,18
|
||||
p8-14|19|0.32804|0|4|1,2,4,6,8,9,12,13,14,16,17,18,19
|
||||
p8-14|19|0.32804|0|4|1,2,4,6,8,9,11,13,14,16,17,18,19
|
||||
p8-14|19|0.35118|0|5|2,3,4,5,10,15
|
||||
p8-14|19|0.34283|0|6|3,4,5,8,13,14,19
|
||||
p8-14|19|0.37290|0|7|1,3,7,8,12,13,18
|
||||
p8-14|19|0.37290|0|7|1,3,7,8,11,13,18
|
||||
p8-14|19|0.35518|0|8|1,3,4,6,7,9,10,12,13,14,15,16,18
|
||||
p8-14|19|0.35518|0|8|1,3,4,6,7,9,10,11,13,14,15,16,18
|
||||
696
InterruptDB/db_norm.txt
Normal file
696
InterruptDB/db_norm.txt
Normal file
@@ -0,0 +1,696 @@
|
||||
p0-2|20|0.25372|0|1|1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
|
||||
p0-2|20|0.32179|0|2|2,3,5,6,8,10,11,12,14,17,18,19,20
|
||||
p0-2|20|0.36781|0|3|1,2,5,7,9,11,14,15,16,17,18,19,20
|
||||
p0-2|20|0.35862|0|4|3,4,6,9,11,12,13,14
|
||||
p0-2|20|0.39120|0|5|1,2,3,4,5,9,12,13,19
|
||||
p0-2|20|0.38987|0|6|1,2,5,7,8,11,14,15,16,17,18,19,20
|
||||
p0-2|20|0.49449|0|7|1,3,5,6,7,9,11,13,14,15,17,18,19
|
||||
p0-2|20|0.39484|0|8|2,5,6,7,10,14,15,16,17,18,19
|
||||
p0-2|20|0.46681|0|9|1,2,3,7,8,11,13,15,16,17
|
||||
p0-2|20|0.44290|0|10|1,2,3,4,5,9,12,13,19
|
||||
p0-2|20|0.51577|0|11|1,3,5,6,10,11,12,13,14,15,16,17,18,19,20
|
||||
p0-2|20|0.51973|0|12|1,2,5,8,9,10,13,14,15,16,18,19,20
|
||||
p0-2|20|0.44832|0|13|1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,19,20
|
||||
p0-2|20|0.56711|0|14|1,4,5,6,8,12,13,14,16,17,20
|
||||
p0-2|20|0.49757|0|15|1,3,4,5,7,9,13,14,15,16,17
|
||||
p0-2|20|0.44301|0|16|3,4,6,8,12,14,15,16,17,18,19
|
||||
p0-2|20|0.55890|0|17|5,6,8,9,10,14,16,17,19
|
||||
p0-2|20|0.50474|0|18|1,2,3,8,9,10,13,14,16,17,18,19,20
|
||||
p0-2|20|0.48681|0|19|3,4,5,6,7,8,10,11,12,18,19,20
|
||||
p0-2|20|0.49393|0|20|1,2,3,4,5,9,12,13,17
|
||||
p0-2|20|0.55519|0|21|1,4,5,6,7,12,14,15,16,20
|
||||
p0-2|20|0.55519|0|21|1,3,4,6,7,12,14,15,16,20
|
||||
p0-2|20|0.50867|0|22|2,3,4,6,8,10,12,19,20
|
||||
p0-2|20|0.52416|0|23|1,2,3,5,6,7,8,9,11,13,14,15,16,17,18,19
|
||||
p0-2|20|0.48413|0|24|4,5,7,10,12,14,15,16,17,18,19,20
|
||||
p0-2|20|0.46824|0|25|1,3,4,5,6,7,8,12,15,16,17,18,20
|
||||
p0-2|20|0.40843|0|26|1,2,3,4,5,7,8,10,11,12,13,14,15,16,17,19
|
||||
p0-2|20|0.44967|0|27|6,7,9,12,17,18,19,20
|
||||
p0-2|20|0.47056|0|28|2,3,4,6,7,9,11,13,15,16,17,18,20
|
||||
p0-2|20|0.46137|0|29|2,5,8,10,12,14,15,16,18,20
|
||||
p0-2|20|0.46137|0|29|2,5,8,10,12,13,15,16,18,20
|
||||
p0-2|20|0.44782|0|30|5,7,9,16,18,19
|
||||
p0-2|20|0.44782|0|30|4,7,9,16,18,19
|
||||
p0-2|20|0.38786|0|31|1,2,8,9,13,17,18,20
|
||||
p0-2|20|0.41222|0|32|3,4,5,6,7,8,9,10,11,12,13,14
|
||||
p3-7|20|0.25851|0|1|1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
|
||||
p3-7|20|0.30059|0|2|1,4,6,7,8,11,13,15,16,18,19,20
|
||||
p3-7|20|0.34571|0|3|1,2,3,6,10,11,12,13,14,15,16,17,18,19,20
|
||||
p3-7|20|0.31537|0|4|1,4,6,7,8,9,10,11,13,15,16,20
|
||||
p3-7|20|0.34611|0|5|1,2,3,4,5,6,9,13,20
|
||||
p3-7|20|0.35211|0|6|1,4,6,11,13,15,17,18,19,20
|
||||
p3-7|20|0.34725|0|7|1,2,3,7,9,10,11,12,13,20
|
||||
p3-7|20|0.36849|0|8|3,4,5,6,7,9,10,14,16,17,20
|
||||
p3-7|20|0.43071|0|9|1,2,5,7,12,14,15,16,17,18,19,20
|
||||
p3-7|20|0.38395|0|10|3,4,7,8,10,11,12,13,15,16,17,18,19,20
|
||||
p3-7|20|0.38911|0|11|2,6,9,11,14,15,16,17,18,19,20
|
||||
p3-7|20|0.44173|0|12|1,4,6,11,13,15,17,20
|
||||
p3-7|20|0.42819|0|13|4,5,6,7,8,14,17,18,20
|
||||
p3-7|20|0.37966|0|14|1,2,4,5,14,16,17,18,19,20
|
||||
p3-7|20|0.44586|0|15|1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
|
||||
p3-7|20|0.47146|0|16|3,4,5,6,7,9,10,13,15,16,20
|
||||
p3-7|20|0.41824|0|17|1,2,3,5,8,9,10,11,12,13,15,16,17,18,19,20
|
||||
p3-7|20|0.41824|0|17|1,2,3,5,8,9,10,11,12,13,14,16,17,18,19,20
|
||||
p3-7|20|0.44767|0|18|1,2,3,5,6,7,9,11,13,15,16,18,19,20
|
||||
p3-7|20|0.38006|0|19|2,4,6,7,8,10,13
|
||||
p3-7|20|0.45765|0|20|3,4,5,8,9,10,11,16,17,18,19,20
|
||||
p3-7|20|0.38504|0|21|1,2,3,7,13,14,15,16,17,18,19
|
||||
p3-7|20|0.46802|0|22|1,4,5,9,10,11,12,13,16,20
|
||||
p3-7|20|0.45255|0|23|3,4,8,16,17,18
|
||||
p3-7|20|0.49438|0|24|2,4,6,7,8,10,11,13,15,17
|
||||
p3-7|20|0.48897|0|25|4,5,7,8,9,10,12,14,20
|
||||
p3-7|20|0.51742|0|26|1,5,6,8,14,15,17,20
|
||||
p3-7|20|0.48603|0|27|1,2,5,6,7,8,9,11,12,14,17,18,19
|
||||
p3-7|20|0.42011|0|28|1,4,5,8,9,11,13,15
|
||||
p3-7|20|0.40695|0|29|1,2,3,4,6,7,9,10,11,15,16,17,18,19
|
||||
p3-7|20|0.50049|0|30|1,4,6,8,10,11,12,15,17,18,19,20
|
||||
p3-7|20|0.43590|0|31|1,3,5,7,8,9,12,14,15,16,17,19
|
||||
p3-7|20|0.47626|0|32|1,3,4,6,7,8,10,13,15,16,20
|
||||
p8-14|20|0.25370|0|1|1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
|
||||
p8-14|20|0.30192|0|2|3,4,7,9,10,12,13,14,15,17,19,20
|
||||
p8-14|20|0.30192|0|2|3,4,7,9,10,11,13,14,15,17,19,20
|
||||
p8-14|20|0.30112|0|3|1,3,4,5,6,8,9,10,13,14,18,19,20
|
||||
p8-14|20|0.33256|0|4|1,2,4,6,8,9,12,13,14,16,17,18,19,20
|
||||
p8-14|20|0.33256|0|4|1,2,4,6,8,9,11,13,14,16,17,18,19,20
|
||||
p8-14|20|0.35167|0|5|2,3,6,7,10,15,20
|
||||
p8-14|20|0.34953|0|6|3,4,5,6,8,9,10,12,13,17,19,20
|
||||
p8-14|20|0.34953|0|6|3,4,5,6,8,9,10,11,13,17,19,20
|
||||
p8-14|20|0.37976|0|7|1,3,7,8,12,13,18
|
||||
p8-14|20|0.37976|0|7|1,3,7,8,11,13,18
|
||||
p8-14|20|0.36220|0|8|1,3,4,6,7,9,10,12,13,14,15,16,18,20
|
||||
p8-14|20|0.36220|0|8|1,3,4,6,7,9,10,11,13,14,15,16,18,20
|
||||
p8-14|20|0.32773|0|9|3,4,5,6,7,8,12,13,15,16,19,20
|
||||
p8-14|20|0.32773|0|9|3,4,5,6,7,8,11,13,15,16,19,20
|
||||
p8-14|20|0.38754|0|10|1,2,3,9,10,12,15
|
||||
p8-14|20|0.38754|0|10|1,2,3,9,10,11,15
|
||||
p8-14|20|0.43031|0|11|1,2,5,6,7,9,10,11,12,16,18,19,20
|
||||
p8-14|20|0.39455|0|12|1,3,5,7,8,9,10,13,14,16,17,18,19
|
||||
p8-14|20|0.39043|0|13|1,5,7,9,10,11,12,13,14,15,16,17,18,19,20
|
||||
p8-14|20|0.44307|0|14|1,3,4,8,11,12,18
|
||||
p8-14|20|0.38997|0|15|2,3,4,5,12,15,18,19,20
|
||||
p8-14|20|0.38997|0|15|2,3,4,5,12,14,18,19,20
|
||||
p8-14|20|0.38997|0|15|2,3,4,5,11,15,18,19,20
|
||||
p8-14|20|0.38997|0|15|2,3,4,5,11,14,18,19,20
|
||||
p8-14|20|0.39518|0|16|3,4,5,6,8,9,10,12,13,14,15,16,18,20
|
||||
p8-14|20|0.39518|0|16|3,4,5,6,8,9,10,11,13,14,15,16,18,20
|
||||
p8-14|20|0.49363|0|17|1,2,4,5,7,8,9,10,11,12,15,18,19
|
||||
p8-14|20|0.49363|0|17|1,2,4,5,7,8,9,10,11,12,14,18,19
|
||||
p8-14|20|0.49363|0|17|1,2,3,5,7,8,9,10,11,12,15,18,19
|
||||
p8-14|20|0.49363|0|17|1,2,3,5,7,8,9,10,11,12,14,18,19
|
||||
p8-14|20|0.44973|0|18|2,3,4,5,6,7,8,12,13,15,16,20
|
||||
p8-14|20|0.44973|0|18|2,3,4,5,6,7,8,11,13,15,16,20
|
||||
p8-14|20|0.38500|0|19|3,7,10,11,12,13,14,15,20
|
||||
p8-14|20|0.44393|0|20|1,3,4,5,9,10,12,14,20
|
||||
p8-14|20|0.44393|0|20|1,3,4,5,9,10,11,14,20
|
||||
p8-14|20|0.41954|0|21|1,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,20
|
||||
p8-14|20|0.53143|0|22|1,4,5,6,8,9,10,11,12,16,18,19,20
|
||||
p8-14|20|0.47526|0|23|2,4,5,6,7,8,9,10,11,12,13,15,16,20
|
||||
p8-14|20|0.45007|0|24|1,3,5,7,12,13,14,16,17,18
|
||||
p8-14|20|0.45007|0|24|1,3,5,7,11,13,14,16,17,18
|
||||
p8-14|20|0.44516|0|25|1,2,3,4,5,6,7,10,12,13,14,15,20
|
||||
p8-14|20|0.44516|0|25|1,2,3,4,5,6,7,10,11,13,14,15,20
|
||||
p8-14|20|0.43575|0|26|5,6,9,10,11,12,13,14,15,16,17,18,19,20
|
||||
p8-14|20|0.45316|0|27|3,5,6,9,10,12,14,17,20
|
||||
p8-14|20|0.45316|0|27|3,5,6,9,10,11,14,17,20
|
||||
p8-14|20|0.42845|0|28|6,8,9,12,16,18,19,20
|
||||
p8-14|20|0.42845|0|28|6,8,9,11,16,18,19,20
|
||||
p8-14|20|0.47028|0|29|1,2,3,4,6,7,8,9,10,11,12,14,15,16,17,19
|
||||
p8-14|20|0.47028|0|29|1,2,3,4,5,7,8,9,10,11,12,14,15,16,17,19
|
||||
p8-14|20|0.44417|0|30|2,3,4,9,12,13,16
|
||||
p8-14|20|0.44417|0|30|2,3,4,9,11,13,16
|
||||
p8-14|20|0.46455|0|31|2,4,7,10,11,12,14,15,16,17,19,20
|
||||
p8-14|20|0.50784|0|32|2,4,6,7,13,14,15,20
|
||||
p15-22|20|0.25952|0|1|1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
|
||||
p15-22|20|0.30925|0|2|1,4,5,6,7,8,9,10,11,14,15,16,17,18,19,20
|
||||
p15-22|20|0.33793|0|3|7,10,11,14,15,17,19,20
|
||||
p15-22|20|0.35325|0|4|1,4,7,8,9,10,11,14,17,18,19,20
|
||||
p15-22|20|0.40320|0|5|1,9,13,14,15,16,17,18,20
|
||||
p15-22|20|0.41079|0|6|4,5,6,7,10,11,14,15,16,19,20
|
||||
p15-22|20|0.39057|0|7|1,2,3,4,7,10,11,12,15,18,19,20
|
||||
p15-22|20|0.39057|0|7|1,2,3,4,7,9,11,12,15,18,19,20
|
||||
p15-22|20|0.43182|0|8|1,4,7,8,9,10,11,13,17,18,19,20
|
||||
p15-22|20|0.34945|0|9|1,2,3,4,5,6,7,13,14,15,16,17,18,19
|
||||
p15-22|20|0.45320|0|10|1,9,11,12,13,14,17,18,19
|
||||
p15-22|20|0.42953|0|11|1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,20
|
||||
p15-22|20|0.52284|0|12|1,2,3,4,5,6,7,10,11,14,19
|
||||
p15-22|20|0.47979|0|13|1,4,5,6,8,9,10,11,12,14,15,16,17,18,19,20
|
||||
p15-22|20|0.42149|0|14|1,4,7,9,11,12,17,18,19,20
|
||||
p15-22|20|0.42867|0|15|1,2,3,4,6,7,10,11,12,13,14,16,18,20
|
||||
p15-22|20|0.45280|0|16|1,4,7,8,9,10,11,13,17,18,19
|
||||
p15-22|20|0.45594|0|17|3,5,6,9,11,13,14,15,16,19,20
|
||||
p15-22|20|0.45594|0|17|1,3,5,6,9,11,13,14,15,16,19,20
|
||||
p15-22|20|0.41973|0|18|3,6,13,14,15,16,17,18,20
|
||||
p15-22|20|0.41973|0|18|3,6,13,14,15,16,17,18,19
|
||||
p15-22|20|0.47812|0|19|1,6,7,8,10,12,13,15,16,18,20
|
||||
p15-22|20|0.47812|0|19|1,6,7,8,10,12,13,15,16,18,19
|
||||
p15-22|20|0.45936|0|20|1,5,6,7,8,9,11,13,14,16,19,20
|
||||
p15-22|20|0.45936|0|20|1,5,6,7,8,9,11,13,14,15,19,20
|
||||
p15-22|20|0.45028|0|21|1,2,4,5,6,7,9,10,14,15,18,19,20
|
||||
p15-22|20|0.42848|0|22|8,11,12,14,15,16,17,20
|
||||
p15-22|20|0.42971|0|23|2,3,4,5,6,7,9,10,12,20
|
||||
p15-22|20|0.48967|0|24|1,2,3,4,7,10,11,14,17,18,19
|
||||
p15-22|20|0.47561|0|25|2,3,4,5,6,12,13,14,15,16,17,18,19,20
|
||||
p15-22|20|0.45089|0|26|2,4,5,6,7,8,9,10,11,13,14,15,20
|
||||
p15-22|20|0.40306|0|27|1,2,3,5,7,8,9,10,14,18,19,20
|
||||
p15-22|20|0.43067|0|28|1,4,7,9,10,11,15,18,19,20
|
||||
p15-22|20|0.40746|0|29|1,2,4,5,7,8,10,11,12,18,19,20
|
||||
p15-22|20|0.42343|0|30|2,3,4,5,9,10,11,13,15,16,17,19,20
|
||||
p15-22|20|0.42343|0|30|2,3,4,5,9,10,11,13,15,16,17,18,20
|
||||
p15-22|20|0.39985|0|31|1,3,13,18,19,20
|
||||
p15-22|20|0.40737|0|32|1,4,9,11,13,14,18,19
|
||||
p23-26|20|0.24381|0|1|1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
|
||||
p23-26|20|0.27700|0|2|1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20
|
||||
p23-26|20|0.30270|0|3|4,7,9,10,13,14,15,16,17,19,20
|
||||
p23-26|20|0.30648|0|4|2,3,4,5,6,7,8,9,11,13,17,20
|
||||
p23-26|20|0.32380|0|5|4,6,7,9,11,20
|
||||
p23-26|20|0.33285|0|6|1,2,4,5,8,9,10,15,18,20
|
||||
p23-26|20|0.35292|0|7|1,2,3,4,6,8,9,10,11,12,13,14,15,16,20
|
||||
p23-26|20|0.34647|0|8|4,7,8,9,11,16,19,20
|
||||
p23-26|20|0.38319|0|9|2,3,4,5,10,11,14,15,17,20
|
||||
p23-26|20|0.38319|0|9|2,3,4,5,10,11,13,15,17,20
|
||||
p23-26|20|0.37787|0|10|4,6,8,9,11,20
|
||||
p23-26|20|0.37302|0|11|2,4,10,12,13,18
|
||||
p23-26|20|0.40467|0|12|4,6,7,10,15,17,18
|
||||
p23-26|20|0.40629|0|13|3,4,5,6,7,8,13,14,15,16,17,18,19
|
||||
p23-26|20|0.49972|0|14|1,3,6,7,8,9,10,11,12,13,14,15
|
||||
p23-26|20|0.45617|0|15|2,3,4,5,7,9,13,15,17,20
|
||||
p23-26|20|0.45115|0|16|1,2,7,8,10,11,15,17,18,20
|
||||
p23-26|20|0.48372|0|17|2,6,9,10,11,12,13,14,19
|
||||
p23-26|20|0.41547|0|18|5,6,7,10,11,12,13,14,17,20
|
||||
p23-26|20|0.50511|0|19|1,2,3,6,7,8,9,10,11,12,13,14,15,16,17,18,19
|
||||
p23-26|20|0.45429|0|20|4,5,6,9,11,20
|
||||
p23-26|20|0.44276|0|21|1,2,4,5,6,7,8,9,10,11,13,14,15,16,18
|
||||
p23-26|20|0.40485|0|22|3,6,9,12,13,15,16,17,19
|
||||
p23-26|20|0.43021|0|23|1,2,3,5,6,7,8,9,13,14,15,16,18,19,20
|
||||
p23-26|20|0.45011|0|24|4,6,7,9,15,16,18,20
|
||||
p23-26|20|0.44398|0|25|1,2,3,4,5,8,9,10,11,12,15,18
|
||||
p23-26|20|0.50671|0|26|3,6,7,8,9,12,15,16,20
|
||||
p23-26|20|0.42727|0|27|1,2,4,5,15,19
|
||||
p23-26|20|0.45086|0|28|4,5,7,8,12,15,16,17,18,19,20
|
||||
p23-26|20|0.44977|0|29|4,5,7,11,12,15,20
|
||||
p23-26|20|0.43557|0|30|1,3,4,5,7,8,10,15,20
|
||||
p23-26|20|0.49913|0|31|1,2,4,5,6,10,13,14,15,16,17,19,20
|
||||
p23-26|20|0.47490|0|32|9,11,12,13,15,17,18,20
|
||||
p27-32|20|0.25305|0|1|1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
|
||||
p27-32|20|0.32483|0|2|1,2,3,5,7,10,11,14,17,18,19,20
|
||||
p27-32|20|0.34284|0|3|2,3,4,5,6,7,9,10,12,13,14,15,16,17,19,20
|
||||
p27-32|20|0.35518|0|4|1,3,4,8,9,11,14,15,18,19,20
|
||||
p27-32|20|0.34213|0|5|1,2,4,7,8,9,10,15,18,19
|
||||
p27-32|20|0.39906|0|6|1,2,7,8,9,11,12,13,15,16,17,18,20
|
||||
p27-32|20|0.35707|0|7|1,8,12,20
|
||||
p27-32|20|0.36421|0|8|1,2,3,4,7,8,11,14,15,16,17,18,19,20
|
||||
p27-32|20|0.44173|0|9|2,3,4,5,6,7,9,11,12,13,14,15,16,17,19,20
|
||||
p27-32|20|0.37915|0|10|1,2,3,6,7,9,11,13,16,18
|
||||
p27-32|20|0.40663|0|11|1,2,3,4,5,6,8,9,10,12,13,14,15,16,18,20
|
||||
p27-32|20|0.46857|0|12|2,3,7,8,10,13,15,17,18,19
|
||||
p27-32|20|0.58252|0|13|2,5,6,10,12,13,15,17,18,19
|
||||
p27-32|20|0.58252|0|13|2,5,6,10,12,13,15,16,18,19
|
||||
p27-32|20|0.46800|0|14|5,6,8,12,13,14,15,16,17,18,19,20
|
||||
p27-32|20|0.50992|0|15|1,2,5,6,9,10,11,12,13,15,18,20
|
||||
p27-32|20|0.45884|0|16|1,2,4,5,6,7,15
|
||||
p27-32|20|0.46660|0|17|1,2,3,5,7,8,9,10,11,14,15,16,17,18,20
|
||||
p27-32|20|0.53843|0|18|3,7,8,11,12,13,14,15,16,17,18,19,20
|
||||
p27-32|20|0.49701|0|19|1,7,10,11,12,13,15,19
|
||||
p27-32|20|0.45284|0|20|2,9,10,11,12,14,15,17,20
|
||||
p27-32|20|0.49059|0|21|1,3,6,8,9,11,13,14,15
|
||||
p27-32|20|0.47856|0|22|1,3,6,7,9,11,12,13,14,15,16,17,18,19,20
|
||||
p27-32|20|0.49852|0|23|3,4,6,7,8,9,10,11,13,14,16,19,20
|
||||
p27-32|20|0.46878|0|24|2,3,5,9,10,12,13,14,19
|
||||
p27-32|20|0.54335|0|25|2,4,5,8,9,10,16,17,18,19
|
||||
p27-32|20|0.58503|0|26|2,4,5,6,7,10,11,13,15,16,17,20
|
||||
p27-32|20|0.40895|0|27|1,5,7,8,10,11,12,13,14,15,17,18,19
|
||||
p27-32|20|0.41979|0|28|1,6,7,8,9,13,14,16,18,19
|
||||
p27-32|20|0.41968|0|29|2,4,6,7,12,14,15,19,20
|
||||
p27-32|20|0.44885|0|30|2,3,7,8,9,10,11,12,13,15,16,17,20
|
||||
p27-32|20|0.47073|0|31|1,5,10,11,12,17,18,19
|
||||
p27-32|20|0.45865|0|32|1,4,5,6,7,8,9,10,11,12,13,15,16,17,18,20
|
||||
p33-39|20|0.23943|0|1|1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
|
||||
p33-39|20|0.26337|0|2|1,2,4,7,8,9,12,13,14,16,18,19,20
|
||||
p33-39|20|0.27238|0|3|1,2,7,8,9,10,11,12,13,14,15,16,17,19,20
|
||||
p33-39|20|0.28015|0|4|1,6,9,10,11,15,16,17,18,19
|
||||
p33-39|20|0.30160|0|5|1,2,5,6,9,10,11,12,13,14,15,16,20
|
||||
p33-39|20|0.28184|0|6|1,2,3,6,7,8,10,13,15,16,18,19
|
||||
p33-39|20|0.31654|0|7|1,2,3,4,6,14,16,17,18,20
|
||||
p33-39|20|0.31213|0|8|2,3,7,8,9,10,11,12,13,14,16,18,19,20
|
||||
p33-39|20|0.31851|0|9|2,3,4,5,7,10,11,13,15,18,20
|
||||
p33-39|20|0.32007|0|10|2,3,4,11,12,13,14,15,16,20
|
||||
p33-39|20|0.34334|0|11|2,3,4,6,7,10,14,17,18
|
||||
p33-39|20|0.30133|0|12|1,6,9,10,11,15,16,17,18,19
|
||||
p33-39|20|0.34984|0|13|3,5,7,10,11,12,13,14,16,19
|
||||
p33-39|20|0.32549|0|14|1,2,10,11,12,14,16,18
|
||||
p33-39|20|0.37553|0|15|1,2,12,13,14,15,16,20
|
||||
p33-39|20|0.37436|0|16|1,4,7,8,9,10,19
|
||||
p33-39|20|0.37764|0|17|5,6,7,8,9,10,15,16
|
||||
p33-39|20|0.36670|0|18|2,4,10,12,13,15,16,18,19,20
|
||||
p33-39|20|0.39561|0|19|3,4,5,10,14,15,16,17,18
|
||||
p33-39|20|0.36650|0|20|1,7,10,11,12,13,14,17,18
|
||||
p33-39|20|0.34817|0|21|1,2,3,10,14,15,16,18,20
|
||||
p33-39|20|0.41002|0|22|2,3,4,6,7,10,14,17,18
|
||||
p33-39|20|0.39568|0|23|1,2,3,5,7,8,10,11,12,13,14,15,16,18,19,20
|
||||
p33-39|20|0.40072|0|24|1,7,8,9,10,11,12,15,18,19,20
|
||||
p33-39|20|0.42175|0|25|1,2,3,4,6,7,8,9,10,11,15,16,20
|
||||
p33-39|20|0.38000|0|26|1,2,3,5,8,10,11,12,13,14,16,19
|
||||
p33-39|20|0.38292|0|27|1,2,3,5,6,8,11,13,15,17,18,19
|
||||
p33-39|20|0.35688|0|28|1,3,4,5,6,10,12,13,14,16,17,19,20
|
||||
p33-39|20|0.48541|0|29|1,2,4,5,7,8,9,11,12,14,15,16,17,18
|
||||
p33-39|20|0.41363|0|30|1,3,4,5,9,18,19,20
|
||||
p33-39|20|0.37195|0|31|4,5,6,7,8,9,10,11,15,17,19
|
||||
p33-39|20|0.38191|0|32|3,6,8,9,20
|
||||
p40-53|20|0.25030|0|1|1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
|
||||
p40-53|20|0.30662|0|2|1,3,4,5,6,7,9,12,13,14,15,16,19,20
|
||||
p40-53|20|0.35231|0|3|1,2,3,4,6,7,8,9,10,12,14,15,16,17,18,19,20
|
||||
p40-53|20|0.35839|0|4|1,3,5,8,9,12,14,16,19,20
|
||||
p40-53|20|0.41841|0|5|1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19
|
||||
p40-53|20|0.39087|0|6|3,6,7,8,13,14,15,18,20
|
||||
p40-53|20|0.40694|0|7|1,5,7,8,12,13,14,16,17,19,20
|
||||
p40-53|20|0.40694|0|7|1,5,6,8,12,13,14,16,17,19,20
|
||||
p40-53|20|0.39933|0|8|1,2,3,7,9,11,14,15,19
|
||||
p40-53|20|0.39933|0|8|1,2,3,6,9,11,14,15,19
|
||||
p40-53|20|0.40459|0|9|1,2,4,7,8,14,15,16,17,18,20
|
||||
p40-53|20|0.53511|0|10|1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19
|
||||
p40-53|20|0.43825|0|11|1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18
|
||||
p40-53|20|0.50765|0|12|1,3,5,6,8,13,14,15,19,20
|
||||
p40-53|20|0.46940|0|13|2,5,6,7,9,14,18,20
|
||||
p40-53|20|0.44457|0|14|4,7,10,12,13,18,20
|
||||
p40-53|20|0.44457|0|14|4,6,10,12,13,18,20
|
||||
p40-53|20|0.51019|0|15|1,2,3,4,7,8,9,10,11,14,17,18,19,20
|
||||
p40-53|20|0.47035|0|16|1,2,3,7,9,11,13,14
|
||||
p40-53|20|0.47035|0|16|1,2,3,6,9,11,13,14
|
||||
p40-53|20|0.43369|0|17|2,8,9,11,15,16,20
|
||||
p40-53|20|0.51316|0|18|1,3,4,5,6,7,9,12,18,20
|
||||
p40-53|20|0.40358|0|19|1,3,4,6,7,8,9,10,11,13,17,19,20
|
||||
p40-53|20|0.59027|0|20|2,3,4,5,6,7,9,10,11,12,13,14,15,16,18,19,20
|
||||
p40-53|20|0.59027|0|20|2,3,4,5,6,7,8,10,11,12,13,14,15,16,18,19,20
|
||||
p40-53|20|0.50720|0|21|1,3,12,13,15,16,17,19
|
||||
p40-53|20|0.44699|0|22|1,2,9,16,17,18
|
||||
p40-53|20|0.50242|0|23|2,3,4,10,14,17,18,20
|
||||
p40-53|20|0.47388|0|24|3,5,7,8,13,14,15,19,20
|
||||
p40-53|20|0.50969|0|25|1,2,6,8,9,14,15,18
|
||||
p40-53|20|0.49479|0|26|2,3,5,9,12,14,15,20
|
||||
p40-53|20|0.49479|0|26|2,3,5,8,12,14,15,20
|
||||
p40-53|20|0.53946|0|27|1,2,4,5,6,7,8,9,12,14,16,19,20
|
||||
p40-53|20|0.46367|0|28|1,12,13,18,20
|
||||
p40-53|20|0.43287|0|29|1,2,3,4,6,7,12,14,15,16,18
|
||||
p40-53|20|0.47522|0|30|1,3,4,7,8,9,10,11,14,16,17,18,20
|
||||
p40-53|20|0.47522|0|30|1,3,4,6,8,9,10,11,14,16,17,18,20
|
||||
p40-53|20|0.43589|0|31|3,4,11,15,16,17,18,19,20
|
||||
p40-53|20|0.44119|0|32|1,4,7,8,9,11,15
|
||||
p40-53|20|0.44119|0|32|1,4,6,8,9,11,15
|
||||
p54-55|6|0.23699|0|1|1,2,3,4,5,6
|
||||
p54-55|6|0.26377|0|2|1,2,4,5,6
|
||||
p54-55|6|0.29913|0|3|1,3,5
|
||||
p54-55|6|0.32510|0|4|1,2,4
|
||||
p54-55|6|0.28694|0|5|4,5
|
||||
p54-55|6|0.32504|0|6|1,3,6
|
||||
p54-55|6|0.28695|0|7|1
|
||||
p54-55|6|0.47630|0|8|1,2,4
|
||||
p54-55|6|0.27813|0|9|1,3,5
|
||||
p54-55|6|0.31556|0|10|4,5,6
|
||||
p54-55|6|0.28537|0|11|5
|
||||
p54-55|6|0.35471|0|12|1,4,5
|
||||
p54-55|6|0.32774|0|13|3
|
||||
p54-55|6|0.31135|0|14|
|
||||
p54-55|6|0.30200|0|15|
|
||||
p54-55|6|0.48538|0|16|1,2,4
|
||||
p54-55|6|0.32733|0|17|1,2,3,4,5,6
|
||||
p54-55|6|0.37584|0|18|1,3,5
|
||||
p54-55|6|0.30792|0|19|1,2,3,5
|
||||
p54-55|6|0.26505|0|20|1,2
|
||||
p54-55|6|0.38050|0|21|2,3,4,6
|
||||
p54-55|6|0.33000|0|22|1,2,4
|
||||
p54-55|6|0.30972|0|23|2,6
|
||||
p54-55|6|0.41172|0|24|1,2,4
|
||||
p54-55|6|0.26863|0|25|
|
||||
p54-55|6|0.26644|0|26|2,4
|
||||
p54-55|6|0.20513|0|27|3,4
|
||||
p54-55|6|0.21547|0|28|2,4,5
|
||||
p54-55|6|0.28147|0|29|3
|
||||
p54-55|6|0.20851|0|30|4,5,6
|
||||
p54-55|6|0.17805|0|31|2,6
|
||||
p54-55|6|0.29944|0|32|1,2,4,6
|
||||
0_warning|1|0.91683|0|1|
|
||||
0_warning|1|0.88915|0|2|
|
||||
0_warning|1|0.64569|0|3|1
|
||||
0_warning|1|0.91317|0|4|
|
||||
0_warning|1|0.78369|0|5|1
|
||||
0_warning|1|0.54033|0|6|1
|
||||
0_warning|1|0.77589|0|7|
|
||||
0_warning|1|0.71344|0|8|
|
||||
0_warning|1|0.50977|0|9|1
|
||||
0_warning|1|0.63189|0|10|1
|
||||
0_warning|1|0.43942|0|11|
|
||||
0_warning|1|0.57421|0|12|1
|
||||
0_warning|1|0.23932|0|13|
|
||||
0_warning|1|0.48864|0|14|
|
||||
0_warning|1|0.15630|0|15|1
|
||||
0_warning|1|0.17815|0|16|1
|
||||
0_warning|1|0.40441|0|17|
|
||||
0_warning|1|0.05498|0|18|1
|
||||
0_warning|1|-0.22961|0|19|
|
||||
0_warning|1|0.21832|0|20|
|
||||
0_warning|1|0.07354|0|21|1
|
||||
0_warning|1|-0.17944|0|22|
|
||||
0_warning|1|0.26243|0|23|1
|
||||
0_warning|1|-0.04112|0|24|1
|
||||
0_warning|1|-0.01138|0|25|1
|
||||
0_warning|1|-0.04436|0|26|1
|
||||
0_warning|1|-0.20499|0|27|1
|
||||
0_warning|1|0.07125|0|28|1
|
||||
0_warning|1|-0.30520|0|29|
|
||||
0_warning|1|-0.14877|0|30|
|
||||
0_warning|1|-0.01330|0|31|1
|
||||
0_warning|1|-0.18755|0|32|1
|
||||
0_welcome|20|0.46393|0|1|1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
|
||||
0_welcome|20|0.63556|0|2|4,5,6,7,11,12,14,15,16,19,20
|
||||
0_welcome|20|0.63556|0|2|4,5,6,7,10,12,14,15,16,19,20
|
||||
0_welcome|20|0.63556|0|2|3,5,6,7,11,12,14,15,16,19,20
|
||||
0_welcome|20|0.63556|0|2|3,5,6,7,10,12,14,15,16,19,20
|
||||
0_welcome|20|0.57441|0|3|1,2,6,10,11,12,14,15,17,18,19
|
||||
0_welcome|20|0.85740|0|4|1,4,5,6,7,9,12,14,19,20
|
||||
0_welcome|20|0.85740|0|4|1,3,5,6,7,9,12,14,19,20
|
||||
0_welcome|20|0.57946|0|5|1,2,4,7,12,15,16
|
||||
0_welcome|20|0.57946|0|5|1,2,3,7,12,15,16
|
||||
0_welcome|20|0.72041|0|6|4,7,10,11,14,15,16,17,18,19,20
|
||||
0_welcome|20|0.72041|0|6|3,7,10,11,14,15,16,17,18,19,20
|
||||
0_welcome|20|0.62000|0|7|4,5,6,9,10,11,13,15
|
||||
0_welcome|20|0.62000|0|7|3,5,6,9,10,11,13,15
|
||||
0_welcome|20|0.90182|0|8|4,5,6,7,9,12,14,18,20
|
||||
0_welcome|20|0.90182|0|8|3,5,6,7,9,12,14,18,20
|
||||
0_welcome|20|0.64445|0|9|2,6,7,8,9,10,11,12,13,14,17,18,19
|
||||
0_welcome|20|0.63282|0|10|1,2,3,4,5,6,8,9,10,11,12,14,15,16,19,20
|
||||
0_welcome|20|0.61887|0|11|1,2,4,5,6,16,17,18,20
|
||||
0_welcome|20|0.61887|0|11|1,2,3,5,6,16,17,18,20
|
||||
0_welcome|20|0.72771|0|12|4,5,6,7,9,11,14,17,18,19
|
||||
0_welcome|20|0.72771|0|12|4,5,6,7,9,10,14,17,18,19
|
||||
0_welcome|20|0.72771|0|12|3,5,6,7,9,11,14,17,18,19
|
||||
0_welcome|20|0.72771|0|12|3,5,6,7,9,10,14,17,18,19
|
||||
0_welcome|20|0.55250|0|13|1,4,5,6,8,11,13,18,19
|
||||
0_welcome|20|0.55250|0|13|1,4,5,6,8,10,13,18,19
|
||||
0_welcome|20|0.55250|0|13|1,3,5,6,8,11,13,18,19
|
||||
0_welcome|20|0.55250|0|13|1,3,5,6,8,10,13,18,19
|
||||
0_welcome|20|0.70223|0|14|4,5,6,8,10,11,14,15,16,17,18,19,20
|
||||
0_welcome|20|0.70223|0|14|3,5,6,8,10,11,14,15,16,17,18,19,20
|
||||
0_welcome|20|0.64755|0|15|1,2,3,4,5,8,14,16,17,18,20
|
||||
0_welcome|20|0.74770|0|16|1,2,4,5,6,7,11,12,14,18,20
|
||||
0_welcome|20|0.74770|0|16|1,2,4,5,6,7,10,12,14,18,20
|
||||
0_welcome|20|0.74770|0|16|1,2,3,5,6,7,11,12,14,18,20
|
||||
0_welcome|20|0.74770|0|16|1,2,3,5,6,7,10,12,14,18,20
|
||||
0_welcome|20|0.71620|0|17|1,4,5,10,11,13,15,18,19,20
|
||||
0_welcome|20|0.71620|0|17|1,3,5,10,11,13,15,18,19,20
|
||||
0_welcome|20|0.65777|0|18|2,6,7,8,9,10,11,12,13,14,17,18,19,20
|
||||
0_welcome|20|0.65953|0|19|1,6,12,19,20
|
||||
0_welcome|20|0.63560|0|20|1,3,4,7,8,9,14,17,20
|
||||
0_welcome|20|0.62656|0|21|6,7,8,9,10,11,12,13,15
|
||||
0_welcome|20|0.61130|0|22|1,3,4,5,6,11,12,14,20
|
||||
0_welcome|20|0.61130|0|22|1,3,4,5,6,10,12,14,20
|
||||
0_welcome|20|0.58736|0|23|1,2,6,7,8,10,11,12,13,15
|
||||
0_welcome|20|0.65231|0|24|1,2,5,6,7,8,12,13
|
||||
0_welcome|20|0.59580|0|25|8,13,14,17
|
||||
0_welcome|20|0.57306|0|26|1,2,4,5,6,7,9,10,11,12,13,17,18,19,20
|
||||
0_welcome|20|0.57306|0|26|1,2,3,5,6,7,9,10,11,12,13,17,18,19,20
|
||||
0_welcome|20|0.62962|0|27|1,2,6,10,11,12,13,15,17,18,19
|
||||
0_welcome|20|0.60485|0|28|1,2,5,6,8,9,10,11,13,14,15,16,18
|
||||
0_welcome|20|0.58436|0|29|1,2,4,8,9,10,11,12,13,16,20
|
||||
0_welcome|20|0.58436|0|29|1,2,3,8,9,10,11,12,13,16,20
|
||||
0_welcome|20|0.61447|0|30|1,2,3,4,14,17,18,19,20
|
||||
0_welcome|20|0.52003|0|31|1,6,8,9
|
||||
0_welcome|20|0.50423|0|32|1,2,4,5,7,8,9,11,14,15,16,17,18,19,20
|
||||
0_welcome|20|0.50423|0|32|1,2,4,5,7,8,9,10,14,15,16,17,18,19,20
|
||||
0_welcome|20|0.50423|0|32|1,2,3,5,7,8,9,11,14,15,16,17,18,19,20
|
||||
0_welcome|20|0.50423|0|32|1,2,3,5,7,8,9,10,14,15,16,17,18,19,20
|
||||
0_wisdom|5|0.82591|0|1|1,2,3,4,5
|
||||
0_wisdom|5|0.85947|0|2|1,2,3,4,5
|
||||
0_wisdom|5|0.87825|0|3|3,4,5
|
||||
0_wisdom|5|0.87825|0|3|2,4,5
|
||||
0_wisdom|5|0.91175|0|4|4,5
|
||||
0_wisdom|5|0.82674|0|5|1,3,4
|
||||
0_wisdom|5|0.82674|0|5|1,2,4
|
||||
0_wisdom|5|0.83130|0|6|1,2,3,4
|
||||
0_wisdom|5|0.77328|0|7|1,3,4
|
||||
0_wisdom|5|0.77328|0|7|1,2,4
|
||||
0_wisdom|5|0.76718|0|8|4
|
||||
0_wisdom|5|0.70171|0|9|1,4,5
|
||||
0_wisdom|5|0.60641|0|10|1,4,5
|
||||
0_wisdom|5|0.49974|0|11|1,3,4,5
|
||||
0_wisdom|5|0.49974|0|11|1,2,4,5
|
||||
0_wisdom|5|0.71552|0|12|1,2,3,4
|
||||
0_wisdom|5|0.55621|0|13|1,2,3
|
||||
0_wisdom|5|0.49888|0|14|4,5
|
||||
0_wisdom|5|0.24044|0|15|
|
||||
0_wisdom|5|0.24443|0|16|1,2,3
|
||||
0_wisdom|5|0.27879|0|17|1,2,3,5
|
||||
0_wisdom|5|0.28649|0|18|
|
||||
0_wisdom|5|0.15378|0|19|4
|
||||
0_wisdom|5|0.27801|0|20|4,5
|
||||
0_wisdom|5|0.09641|0|21|2,3,4,5
|
||||
0_wisdom|5|0.34639|0|22|2,3,4
|
||||
0_wisdom|5|-0.06256|0|23|2,3,4,5
|
||||
0_wisdom|5|0.36527|0|24|
|
||||
0_wisdom|5|0.05457|0|25|1,5
|
||||
0_wisdom|5|0.05823|0|26|3,5
|
||||
0_wisdom|5|0.05823|0|26|2,5
|
||||
0_wisdom|5|-0.05569|0|27|1,2,3
|
||||
0_wisdom|5|-0.04680|0|28|2,3
|
||||
0_wisdom|5|-0.30551|0|29|1,2,3,4
|
||||
0_wisdom|5|-0.47187|0|30|5
|
||||
0_wisdom|5|-0.40838|0|31|3
|
||||
0_wisdom|5|-0.40838|0|31|2
|
||||
0_wisdom|5|-0.77259|0|32|1,3
|
||||
0_wisdom|5|-0.77259|0|32|1,2
|
||||
0_koan_1|20|0.82292|0|1|
|
||||
0_koan_1|20|0.84586|0|2|3,20
|
||||
0_koan_1|20|0.87063|0|3|6,12,13,16,17
|
||||
0_koan_1|20|0.88349|0|4|3,9,10,20
|
||||
0_koan_1|20|0.91487|0|5|2,4,8,15,19
|
||||
0_koan_1|20|0.89052|0|6|4,9,10,11,12,13,17,19
|
||||
0_koan_1|20|0.91207|0|7|1,3,6,7,9,11,15,18
|
||||
0_koan_1|20|0.92195|0|8|1,3,7,8,16,17,18,19,20
|
||||
0_koan_1|20|0.90983|0|9|6,7,9,10,11,13,15,16,20
|
||||
0_koan_1|20|0.95502|0|10|1,3,9,13,16
|
||||
0_koan_1|20|0.91699|0|11|1,3,4,6,7,8,9,11,12,13,14,16,17,18,19,20
|
||||
0_koan_1|20|0.88792|0|12|3,4,6,7,12,13,16,17,20
|
||||
0_koan_1|20|0.90801|0|13|2,3,6,7,8,12,13,14,15,16,17,18,20
|
||||
0_koan_1|20|0.89652|0|14|1,3,4,7,13,14
|
||||
0_koan_1|20|0.92555|0|15|2,5,6,7,11,16,17
|
||||
0_koan_1|20|0.89011|0|16|3,4,6,11,16
|
||||
0_koan_1|20|0.88106|0|17|6,9,11,12,13,14,17
|
||||
0_koan_1|20|0.89307|0|18|1,2,3,7,8,9,11,12,15,17,19
|
||||
0_koan_1|20|0.86701|0|19|1,4,5,7,8,11,12,13,14,15,16,18,19
|
||||
0_koan_1|20|0.88425|0|20|2,3,8,10,13,14,16,18,19,20
|
||||
0_koan_1|20|0.85963|0|21|3,6,9,10,12,13,16,18,19
|
||||
0_koan_1|20|0.86382|0|22|1,4,5,7,8,10,11,13,20
|
||||
0_koan_1|20|0.84770|0|23|4,5,7,8,11,12,13,14,15,16,17,18
|
||||
0_koan_1|20|0.83569|0|24|2,3,4,5,6,8,11,15,17,19
|
||||
0_koan_1|20|0.83097|0|25|1,5,6,7,8,9,10,11,12,14,15,17,18,19,20
|
||||
0_koan_1|20|0.81605|0|26|3,6,10,11,12,14,15,16,17,18,19,20
|
||||
0_koan_1|20|0.82362|0|27|2,3,4,5,6,11,14,16,18,19,20
|
||||
0_koan_1|20|0.76188|0|28|1,2,5,8,13,14
|
||||
0_koan_1|20|0.80543|0|29|1,3,5,6,8,10,16,17
|
||||
0_koan_1|20|0.80823|0|30|1,2,4,7,8,12,13,15,18
|
||||
0_koan_1|20|0.75602|0|31|3,8,9,10,14,15,17,18,19,20
|
||||
0_koan_1|20|0.78839|0|32|1,2,3,7,8,11,19
|
||||
0_loss_of_divinity|8|0.99844|0|1|
|
||||
0_loss_of_divinity|8|0.99758|0|2|3,4
|
||||
0_loss_of_divinity|8|0.99548|0|3|1,4,7
|
||||
0_loss_of_divinity|8|0.98466|0|4|2,6,7
|
||||
0_loss_of_divinity|8|0.97123|0|5|1,2,3,4,5,7
|
||||
0_loss_of_divinity|8|0.95364|0|6|1,6,7,8
|
||||
0_loss_of_divinity|8|0.95033|0|7|1,2
|
||||
0_loss_of_divinity|8|0.93672|0|8|4
|
||||
0_loss_of_divinity|8|0.89207|0|9|3,4,8
|
||||
0_loss_of_divinity|8|0.89564|0|10|1,2,3,4,6,7,8
|
||||
0_loss_of_divinity|8|0.90274|0|11|1,2,3,5,6,7
|
||||
0_loss_of_divinity|8|0.87356|0|12|1,2,6,7
|
||||
0_loss_of_divinity|8|0.85706|0|13|1,2,5,6,7,8
|
||||
0_loss_of_divinity|8|0.83737|0|14|3,4
|
||||
0_loss_of_divinity|8|0.84633|0|15|1,4,8
|
||||
0_loss_of_divinity|8|0.83144|0|16|2,3,4,6,7
|
||||
0_loss_of_divinity|8|0.82408|0|17|1,3
|
||||
0_loss_of_divinity|8|0.78440|0|18|2,4,7,8
|
||||
0_loss_of_divinity|8|0.82927|0|19|1,2,3,5,6,7,8
|
||||
0_loss_of_divinity|8|0.84965|0|20|1,3,4,6
|
||||
0_loss_of_divinity|8|0.80478|0|21|1,5,6,7,8
|
||||
0_loss_of_divinity|8|0.81473|0|22|2,4,7,8
|
||||
0_loss_of_divinity|8|0.72799|0|23|4,8
|
||||
0_loss_of_divinity|8|0.75176|0|24|1,2,3,4,5,8
|
||||
0_loss_of_divinity|8|0.77322|0|25|1,3,4,6
|
||||
0_loss_of_divinity|8|0.72813|0|26|2,5,6,7,8
|
||||
0_loss_of_divinity|8|0.72284|0|27|1,2,3,4,5,8
|
||||
0_loss_of_divinity|8|0.69291|0|28|3,7,8
|
||||
0_loss_of_divinity|8|0.69115|0|29|1,5,7
|
||||
0_loss_of_divinity|8|0.69457|0|30|1,4
|
||||
0_loss_of_divinity|8|0.69779|0|31|3
|
||||
0_loss_of_divinity|8|0.67699|0|32|4,5
|
||||
jpg107-167|5|0.38712|0|1|1,2,3,4,5
|
||||
jpg107-167|5|0.38314|0|2|1,2,3,4,5
|
||||
jpg107-167|5|0.42154|0|3|1,4,5
|
||||
jpg107-167|5|0.36994|0|4|1,2,3
|
||||
jpg107-167|5|0.42017|0|5|1,2,3,4
|
||||
jpg107-167|5|0.41453|0|6|1,4,5
|
||||
jpg107-167|5|0.42005|0|7|2,4,5
|
||||
jpg107-167|5|0.41039|0|8|1,2,3
|
||||
jpg107-167|5|0.48602|0|9|1,4,5
|
||||
jpg107-167|5|0.41828|0|10|1,3,4,5
|
||||
jpg107-167|5|0.40501|0|11|1,3,4,5
|
||||
jpg107-167|5|0.30480|0|12|1,3
|
||||
jpg107-167|5|0.74200|0|13|2,4
|
||||
jpg107-167|5|0.35611|0|14|1,5
|
||||
jpg107-167|5|0.31099|0|15|1,4,5
|
||||
jpg107-167|5|0.32266|0|16|1,2
|
||||
jpg107-167|5|0.38528|0|17|1,2,3,4
|
||||
jpg107-167|5|0.38127|0|18|1,2,5
|
||||
jpg107-167|5|0.34112|0|19|3
|
||||
jpg107-167|5|0.45235|0|20|1,4
|
||||
jpg107-167|5|0.41041|0|21|1,4,5
|
||||
jpg107-167|5|0.35028|0|22|2,3,4
|
||||
jpg107-167|5|0.25515|0|23|1,4,5
|
||||
jpg107-167|5|0.32212|0|24|1,3
|
||||
jpg107-167|5|0.19144|0|25|1,5
|
||||
jpg107-167|5|0.57273|0|26|3,4
|
||||
jpg107-167|5|0.31905|0|27|2,3,5
|
||||
jpg107-167|5|0.16390|0|28|1,3,5
|
||||
jpg107-167|5|0.28642|0|29|4,5
|
||||
jpg107-167|5|0.32226|0|30|1,2,4,5
|
||||
jpg107-167|5|0.18126|0|31|1,2,5
|
||||
jpg107-167|5|0.13815|0|32|3,5
|
||||
jpg229|2|0.96275|0|1|1,2
|
||||
jpg229|2|0.87772|0|2|
|
||||
jpg229|2|0.66433|0|3|
|
||||
jpg229|2|0.67796|0|4|
|
||||
jpg229|2|0.79821|0|5|1,2
|
||||
jpg229|2|0.39461|0|6|1,2
|
||||
jpg229|2|0.80939|0|7|2
|
||||
jpg229|2|0.80939|0|7|1
|
||||
jpg229|2|0.20909|0|8|2
|
||||
jpg229|2|0.20909|0|8|1
|
||||
jpg229|2|0.17573|0|9|
|
||||
jpg229|2|0.47465|0|10|
|
||||
jpg229|2|0.23380|0|11|1,2
|
||||
jpg229|2|-0.08032|0|12|
|
||||
jpg229|2|0.01706|0|13|
|
||||
jpg229|2|-0.01536|0|14|2
|
||||
jpg229|2|-0.01536|0|14|1
|
||||
jpg229|2|-0.08491|0|15|1,2
|
||||
jpg229|2|-0.38903|0|16|
|
||||
jpg229|2|-0.63911|0|17|
|
||||
jpg229|2|-0.55790|0|18|2
|
||||
jpg229|2|-0.55790|0|18|1
|
||||
jpg229|2|-0.67101|0|19|1,2
|
||||
jpg229|2|-0.98167|0|20|
|
||||
jpg229|2|-0.86491|0|21|
|
||||
jpg229|2|-1.12440|0|22|
|
||||
jpg229|2|-1.37521|0|23|1,2
|
||||
jpg229|2|-1.45731|0|24|1,2
|
||||
jpg229|2|-0.97944|0|25|1,2
|
||||
jpg229|2|-1.10796|0|26|2
|
||||
jpg229|2|-1.10796|0|26|1
|
||||
jpg229|2|-1.36985|0|27|
|
||||
jpg229|2|-2.34944|0|28|2
|
||||
jpg229|2|-2.34944|0|28|1
|
||||
jpg229|2|-1.70641|0|29|
|
||||
jpg229|2|-0.97766|0|30|1,2
|
||||
jpg229|2|-1.16848|0|31|
|
||||
jpg229|2|-1.16848|0|31|2
|
||||
jpg229|2|-1.16848|0|31|1
|
||||
jpg229|2|-1.72983|0|32|
|
||||
p56_an_end|5|0.19910|0|1|1,2,3,4,5
|
||||
p56_an_end|5|0.41107|0|2|1,4,5
|
||||
p56_an_end|5|0.42629|0|3|1,2,3
|
||||
p56_an_end|5|0.45827|0|4|1,4,5
|
||||
p56_an_end|5|0.44886|0|5|1
|
||||
p56_an_end|5|0.41252|0|6|3,4,5
|
||||
p56_an_end|5|0.38129|0|7|1,3,4,5
|
||||
p56_an_end|5|0.38129|0|7|1,2,4,5
|
||||
p56_an_end|5|0.43208|0|8|1
|
||||
p56_an_end|5|0.24734|0|9|2,3,4
|
||||
p56_an_end|5|0.32505|0|10|1,3
|
||||
p56_an_end|5|0.18514|0|11|1,2,4
|
||||
p56_an_end|5|0.18364|0|12|
|
||||
p56_an_end|5|0.39616|0|13|2,3,4
|
||||
p56_an_end|5|-0.10476|0|14|1
|
||||
p56_an_end|5|-0.25696|0|15|1
|
||||
p56_an_end|5|-0.28871|0|16|1,2,5
|
||||
p56_an_end|5|-0.54520|0|17|2,3,4
|
||||
p56_an_end|5|-0.59386|0|18|2,3,5
|
||||
p56_an_end|5|-0.87452|0|19|1,4,5
|
||||
p56_an_end|5|-0.80518|0|20|4
|
||||
p56_an_end|5|-0.83492|0|21|3
|
||||
p56_an_end|5|-0.83492|0|21|2
|
||||
p56_an_end|5|-0.83492|0|21|1
|
||||
p56_an_end|5|-0.83492|0|21|1,4
|
||||
p56_an_end|5|-0.83492|0|21|1,3
|
||||
p56_an_end|5|-0.83492|0|21|1,2
|
||||
p56_an_end|5|-0.94904|0|22|1,5
|
||||
p56_an_end|5|-0.94904|0|22|1,3,5
|
||||
p56_an_end|5|-0.94904|0|22|1,3,4
|
||||
p56_an_end|5|-0.94904|0|22|1,2,5
|
||||
p56_an_end|5|-0.94904|0|22|1,2,3
|
||||
p56_an_end|5|-0.94904|0|22|1,2,3,5
|
||||
p56_an_end|5|-0.82960|0|23|2,3,4,5
|
||||
p56_an_end|5|-0.82960|0|23|1,3,4,5
|
||||
p56_an_end|5|-0.82960|0|23|1,2,4,5
|
||||
p56_an_end|5|-0.82960|0|23|1,2,3
|
||||
p56_an_end|5|-0.77369|0|24|4,5
|
||||
p56_an_end|5|-0.77369|0|24|3,5
|
||||
p56_an_end|5|-0.77369|0|24|2,5
|
||||
p56_an_end|5|-0.77369|0|24|2,3,4,5
|
||||
p56_an_end|5|-0.77369|0|24|1,5
|
||||
p56_an_end|5|-0.77369|0|24|1,3,4,5
|
||||
p56_an_end|5|-0.77369|0|24|1,2,4,5
|
||||
p56_an_end|5|-0.77369|0|25|4,5
|
||||
p56_an_end|5|-1.00904|0|26|1,2
|
||||
p56_an_end|5|-0.77369|0|27|3,4
|
||||
p56_an_end|5|-0.77369|0|27|1,2
|
||||
p56_an_end|5|-0.99223|0|28|
|
||||
p56_an_end|5|-0.99223|0|28|5
|
||||
p56_an_end|5|-0.77369|0|29|1,2,3
|
||||
p56_an_end|5|-0.97766|0|30|2,3,4,5
|
||||
p56_an_end|5|-0.77369|0|31|1,4
|
||||
p56_an_end|5|-0.77369|0|31|1,4,5
|
||||
p56_an_end|5|-0.77369|0|31|1,3
|
||||
p56_an_end|5|-0.77369|0|31|1,3,5
|
||||
p56_an_end|5|-0.77369|0|31|1,3,4
|
||||
p56_an_end|5|-0.77369|0|31|1,2
|
||||
p56_an_end|5|-0.77369|0|31|1,2,5
|
||||
p56_an_end|5|-0.77369|0|31|1,2,4
|
||||
p56_an_end|5|-0.77369|0|31|1,2,4,5
|
||||
p56_an_end|5|-0.77369|0|31|1,2,3
|
||||
p56_an_end|5|-0.77369|0|31|1,2,3,5
|
||||
p56_an_end|5|-0.96491|0|32|
|
||||
p56_an_end|5|-0.96491|0|32|5
|
||||
p56_an_end|5|-0.96491|0|32|4
|
||||
p56_an_end|5|-0.96491|0|32|3
|
||||
p56_an_end|5|-0.96491|0|32|2
|
||||
p56_an_end|5|-0.96491|0|32|2,5
|
||||
p57_parable|3|0.95510|0|1|
|
||||
p57_parable|3|0.80339|0|2|1,2
|
||||
p57_parable|3|0.84246|0|3|1,2,3
|
||||
p57_parable|3|0.87582|0|4|1,3
|
||||
p57_parable|3|0.77458|0|5|1,2
|
||||
p57_parable|3|0.63893|0|6|1,2
|
||||
p57_parable|3|0.61164|0|7|1,3
|
||||
p57_parable|3|0.35592|0|8|1,3
|
||||
p57_parable|3|0.50414|0|9|3
|
||||
p57_parable|3|0.53219|0|10|1,3
|
||||
p57_parable|3|0.34024|0|11|1,2,3
|
||||
p57_parable|3|0.07647|0|12|2,3
|
||||
p57_parable|3|-0.04204|0|13|1,3
|
||||
p57_parable|3|0.17759|0|14|1,2
|
||||
p57_parable|3|-0.06591|0|15|
|
||||
p57_parable|3|-0.18728|0|16|1
|
||||
p57_parable|3|-0.37358|0|17|2,3
|
||||
p57_parable|3|-0.37856|0|18|1,2,3
|
||||
p57_parable|3|-0.43296|0|19|1,3
|
||||
p57_parable|3|-0.61140|0|20|2,3
|
||||
p57_parable|3|-0.68037|0|21|1
|
||||
p57_parable|3|-0.83174|0|22|3
|
||||
p57_parable|3|-1.22098|0|23|1
|
||||
p57_parable|3|-0.93443|0|24|1,2,3
|
||||
p57_parable|3|-0.97944|0|25|
|
||||
p57_parable|3|-1.44224|0|26|1
|
||||
p57_parable|3|-1.23847|0|27|2,3
|
||||
p57_parable|3|-0.86554|0|28|1,2
|
||||
p57_parable|3|-1.32874|0|29|
|
||||
p57_parable|3|-1.51421|0|30|3
|
||||
p57_parable|3|-1.56327|0|31|1,3
|
||||
p57_parable|3|-1.34737|0|32|1,2,3
|
||||
124
InterruptDB/db_norm_secondary.txt
Normal file
124
InterruptDB/db_norm_secondary.txt
Normal file
@@ -0,0 +1,124 @@
|
||||
p0-2|20|0.55114|0|14|2,4,5,6,8,12,13,14,16,17,20
|
||||
p0-2|20|0.55691|0|14|1,3,5,6,8,12,13,14,16,17,20
|
||||
p0-2|20|0.55181|0|14|1,3,4,6,8,12,13,14,16,17,20
|
||||
p27-32|20|0.56088|0|13|5,6,10,11,13,15
|
||||
p27-32|20|0.55851|0|13|5,6,10,11,13,14,15,16,17
|
||||
p27-32|20|0.55248|0|13|3,5,10,11,13,14,15,16,17,18,19,20
|
||||
p27-32|20|0.55371|0|13|3,5,6,11,12,13,15
|
||||
p27-32|20|0.57557|0|13|3,5,6,10,11,13,15
|
||||
p27-32|20|0.55940|0|13|3,5,6,10,11,13,15,16,17,18
|
||||
p27-32|20|0.55128|0|13|3,5,6,10,11,13,15,16,17,18,19,20
|
||||
p27-32|20|0.55641|0|13|3,5,6,9,11,14,15,16,17,18
|
||||
p27-32|20|0.55188|0|13|3,5,6,9,11,13,15,16,17,18
|
||||
p27-32|20|0.56118|0|13|3,5,6,9,10,14,15,16,17,18
|
||||
p27-32|20|0.55940|0|13|3,5,6,8,9,13,15
|
||||
p27-32|20|0.55188|0|13|3,4,10,11,13,14,15,16,18
|
||||
p27-32|20|0.56688|0|13|3,4,10,11,13,14,15,16,17
|
||||
p27-32|20|0.56118|0|13|3,4,10,11,13,14,15,16,17,18,19,20
|
||||
p27-32|20|0.55581|0|13|3,4,10,11,12,14,15,16,17
|
||||
p27-32|20|0.55728|0|13|3,4,10,11,12,14,15,16,17,18,19,20
|
||||
p27-32|20|0.55101|0|13|3,4,10,11,12,13,15,16,17
|
||||
p27-32|20|0.57197|0|13|3,4,6,11,12,13,15
|
||||
p27-32|20|0.55158|0|13|3,4,6,11,12,13,14
|
||||
p27-32|20|0.56240|0|13|3,4,6,10,12,13,15
|
||||
p27-32|20|0.55011|0|13|3,4,6,10,12,13,15,17,18
|
||||
p27-32|20|0.55011|0|13|3,4,6,10,12,13,15,16,18
|
||||
p27-32|20|0.55880|0|13|3,4,6,10,12,13,15,16,17
|
||||
p27-32|20|0.55013|0|13|3,4,6,10,12,13,15,16,17,19,20
|
||||
p27-32|20|0.55191|0|13|3,4,6,10,12,13,14
|
||||
p27-32|20|0.56028|0|13|3,4,6,10,11,13,15
|
||||
p27-32|20|0.55731|0|13|3,4,5,11,12,13,14,17,18
|
||||
p27-32|20|0.55191|0|13|3,4,5,11,12,13,14,16,17
|
||||
p27-32|20|0.55818|0|13|3,4,5,11,12,13,14,15,16,19
|
||||
p27-32|20|0.55733|0|13|3,4,5,10,12,13,14,17,18
|
||||
p27-32|20|0.55523|0|13|2,5,8,10,14,16,17
|
||||
p27-32|20|0.55371|0|13|2,5,8,10,12,13,15,16,17,19
|
||||
p27-32|20|0.55068|0|13|2,5,7,10,12,14,15,16,17,19
|
||||
p27-32|20|0.57290|0|13|2,5,7,10,12,13,15,16,17,19
|
||||
p27-32|20|0.56060|0|13|2,5,6,11,12,14,15,16,17,19
|
||||
p27-32|20|0.56390|0|13|2,5,6,11,12,13,15
|
||||
p27-32|20|0.57919|0|13|2,5,6,11,12,13,15,16,17,19
|
||||
p27-32|20|0.55491|0|13|2,5,6,10,12,14,15
|
||||
p27-32|20|0.57047|0|13|2,5,6,10,12,14,15,17,18,19
|
||||
p27-32|20|0.57047|0|13|2,5,6,10,12,14,15,16,18,19
|
||||
p27-32|20|0.57919|0|13|2,5,6,10,12,14,15,16,17,19
|
||||
p27-32|20|0.55011|0|13|2,5,6,10,12,13,18
|
||||
p27-32|20|0.56243|0|13|2,5,6,10,12,13,15
|
||||
p27-32|20|0.55521|0|13|2,5,6,10,12,13,15,17,18,20
|
||||
p27-32|20|0.55910|0|13|2,5,6,10,12,13,15,17,18,19,20
|
||||
p27-32|20|0.55521|0|13|2,5,6,10,12,13,15,16,18,20
|
||||
p27-32|20|0.55910|0|13|2,5,6,10,12,13,15,16,18,19,20
|
||||
p27-32|20|0.57802|0|13|2,5,6,10,12,13,15,16,17,19
|
||||
p27-32|20|0.55940|0|13|2,5,6,10,12,13,15,16,17,19,20
|
||||
p27-32|20|0.56183|0|13|2,5,6,10,11,14,15,16,17,19
|
||||
p27-32|20|0.55703|0|13|2,5,6,10,11,14,15,16,17,18
|
||||
p27-32|20|0.55701|0|13|2,5,6,10,11,13,15
|
||||
p27-32|20|0.56663|0|13|2,5,6,10,11,13,15,16,17,19
|
||||
p27-32|20|0.56663|0|13|2,5,6,10,11,13,15,16,17,18
|
||||
p27-32|20|0.58162|0|13|2,4,8,10,14,16,17
|
||||
p27-32|20|0.55401|0|13|2,4,8,10,13,16,17
|
||||
p27-32|20|0.55851|0|13|2,4,7,10,12,13,15,16,17,19
|
||||
p27-32|20|0.56900|0|13|2,4,6,11,12,14,15,16,17,19
|
||||
p27-32|20|0.57227|0|13|2,4,6,11,12,13,15
|
||||
p27-32|20|0.55431|0|13|2,4,6,11,12,13,15,17,18,19
|
||||
p27-32|20|0.55431|0|13|2,4,6,11,12,13,15,16,18,19
|
||||
p27-32|20|0.57742|0|13|2,4,6,11,12,13,15,16,17,19
|
||||
p27-32|20|0.55401|0|13|2,4,6,11,12,13,15,16,17,18
|
||||
p27-32|20|0.55101|0|13|2,4,6,10,12,16,17
|
||||
p27-32|20|0.56750|0|13|2,4,6,10,12,14,15
|
||||
p27-32|20|0.55910|0|13|2,4,6,10,12,14,15,17,18,19
|
||||
p27-32|20|0.55910|0|13|2,4,6,10,12,14,15,16,18,19
|
||||
p27-32|20|0.58104|0|13|2,4,6,10,12,14,15,16,17,19
|
||||
p27-32|20|0.55311|0|13|2,4,6,10,12,13,18
|
||||
p27-32|20|0.58102|0|13|2,4,6,10,12,13,15
|
||||
p27-32|20|0.55878|0|13|2,4,6,10,12,13,15,17,18
|
||||
p27-32|20|0.57202|0|13|2,4,6,10,12,13,15,17,18,20
|
||||
p27-32|20|0.57829|0|13|2,4,6,10,12,13,15,17,18,19
|
||||
p27-32|20|0.55251|0|13|2,4,6,10,12,13,15,17,18,19,20
|
||||
p27-32|20|0.55878|0|13|2,4,6,10,12,13,15,16,18
|
||||
p27-32|20|0.57202|0|13|2,4,6,10,12,13,15,16,18,20
|
||||
p27-32|20|0.57829|0|13|2,4,6,10,12,13,15,16,18,19
|
||||
p27-32|20|0.55251|0|13|2,4,6,10,12,13,15,16,18,19,20
|
||||
p27-32|20|0.55251|0|13|2,4,6,10,12,13,15,16,17
|
||||
p27-32|20|0.57145|0|13|2,4,6,10,12,13,15,16,17,19
|
||||
p27-32|20|0.57260|0|13|2,4,6,10,12,13,15,16,17,19,20
|
||||
p27-32|20|0.55226|0|13|2,4,6,10,12,13,15,16,17,18
|
||||
p27-32|20|0.57502|0|13|2,4,6,10,12,13,14
|
||||
p27-32|20|0.56030|0|13|2,4,6,10,12,13,14,17,18,19
|
||||
p27-32|20|0.55551|0|13|2,4,6,10,12,13,14,16,18,19
|
||||
p27-32|20|0.55041|0|13|2,4,6,9,12,13,17
|
||||
p27-32|20|0.55970|0|13|2,4,6,9,12,13,15
|
||||
p27-32|20|0.55641|0|13|2,4,6,8,12,13,15
|
||||
p27-32|20|0.55461|0|13|2,4,5,10,12,13,15
|
||||
p27-32|20|0.55821|0|13|2,4,5,10,12,13,14
|
||||
p27-32|20|0.56723|0|13|2,3,8,10,14,16,17
|
||||
p27-32|20|0.55196|0|13|2,3,6,10,12,14,15,16,17,19
|
||||
p27-32|20|0.55253|0|13|1,5,8,10,14,16,17
|
||||
p27-32|20|0.56962|0|13|1,4,8,10,14,16,17
|
||||
p27-32|20|0.55551|0|13|1,4,8,10,13,16,17
|
||||
p27-32|20|0.56393|0|13|1,3,8,10,14,16,17
|
||||
p27-32|20|0.55880|0|13|1,3,8,10,13,16,17
|
||||
p27-32|20|0.55553|0|13|1,3,8,9,13,16,19
|
||||
p27-32|20|0.55013|0|13|1,3,8,9,13,16,18
|
||||
p27-32|20|0.55133|0|13|1,3,8,9,13,16,17
|
||||
p27-32|20|0.55433|0|13|1,3,8,9,13,15,18
|
||||
p27-32|20|0.56540|0|13|1,3,5,6,9,10,14,15,16,17,18
|
||||
p27-32|20|0.55076|0|13|1,3,5,6,8,9,13,15,16,17,18
|
||||
p27-32|20|0.55701|0|13|1,2,5,6,10,11,14,15,16,17,19
|
||||
p27-32|20|0.56123|0|13|1,2,5,6,10,11,14,15,16,17,18
|
||||
p27-32|20|0.55191|0|13|1,2,5,6,10,11,13,15,16,17,19
|
||||
p27-32|20|0.55671|0|13|1,2,5,6,10,11,13,15,16,17,18
|
||||
p27-32|20|0.55221|0|13|1,2,3,5,6,10,11,14,15,16,17,18
|
||||
p27-32|20|0.57647|0|13|1,2,3,5,6,10,11,13,15,16,17,18
|
||||
p27-32|20|0.56329|0|13|1,2,3,4,5,6,8,9,13,15,16,17,18,19,20
|
||||
p27-32|20|0.57076|0|26|2,4,5,6,7,10,11,13,15,16,17
|
||||
p27-32|20|0.56179|0|26|2,4,5,6,7,9,11,13,15,16,17
|
||||
p27-32|20|0.55084|0|26|2,3,5,6,7,10,11,13,15,16,17,20
|
||||
p27-32|20|0.55084|0|26|2,3,4,6,7,10,11,13,15,16,17,20
|
||||
p27-32|20|0.55847|0|26|1,4,5,6,7,10,11,13,15,18,19,20
|
||||
p27-32|20|0.56013|0|26|1,4,5,6,7,10,11,13,15,16,17,20
|
||||
p27-32|20|0.55051|0|26|1,2,4,5,7,11,12,13
|
||||
p40-53|20|0.55588|0|20|2,3,4,5,6,7,8,9,11,12,13,14,15,16,18,19,20
|
||||
p40-53|20|0.58751|0|20|1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,18,19,20
|
||||
p40-53|20|0.58751|0|20|1,2,3,4,5,6,7,8,10,11,12,13,14,15,16,18,19,20
|
||||
p40-53|20|0.55312|0|20|1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,18,19,20
|
||||
File diff suppressed because it is too large
Load Diff
1091
InterruptDB/index_high.html
Normal file
1091
InterruptDB/index_high.html
Normal file
File diff suppressed because it is too large
Load Diff
195
InterruptDB/index_norm.html
Normal file
195
InterruptDB/index_norm.html
Normal file
@@ -0,0 +1,195 @@
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="utf-8"/>
|
||||
<meta name="viewport" content="initial-scale=1.0,maximum-scale=1.0" />
|
||||
<title>InterruptDB – Frequency Analysis, IoC</title>
|
||||
<style type="text/css">
|
||||
body {
|
||||
max-width: 700px;
|
||||
font-family: sans-serif;
|
||||
margin: 80px auto;
|
||||
padding: 20px;
|
||||
}
|
||||
h2,h3,h4 { padding-top: 5ex; }
|
||||
h3 b { font-size: 2em; }
|
||||
nav {
|
||||
position: fixed;
|
||||
z-index: 2;
|
||||
background: #222;
|
||||
left: 0; right: 0; top: 0;
|
||||
width: 100%;
|
||||
text-align: center;
|
||||
line-height: 2em;
|
||||
}
|
||||
nav a { padding: .5em .25em; color: #FFF; text-decoration: none; }
|
||||
dt { font-weight: lighter; margin: .5em 0 }
|
||||
dd span { display: block; color: #33F; }
|
||||
table { width: 100%; }
|
||||
td { text-align: center; font-size: 0.9em; }
|
||||
h3 + table { margin-top: -4em; }
|
||||
tr.rotate>th>div { width: 0px; height: 9em; word-break: keep-all; }
|
||||
tr.rotate>th {
|
||||
transform-origin: 0 100%;
|
||||
transform: translateX(50%) translateX(9em) translateX(-1ex) rotate(-90deg);
|
||||
padding-left: .5em;
|
||||
}
|
||||
.small { font-size: 0.9em; }
|
||||
.m0, .m1, .m2, .m3, .m4, .m5 { color: #000; }
|
||||
.m6, .m7, .m8, .m9, .m10, .m11, .m12, .m13, .m14, .m15 { color: #FFF; }
|
||||
.m0 { background: #ffffff; } .m1 { background: #e5e5ff; } .m2 { background: #ccccff; }
|
||||
.m3 { background: #b2b2ff; } .m4 { background: #9999ff; } .m5 { background: #7f7fff; }
|
||||
.m6 { background: #6666ff; } .m7 { background: #4c4cff; } .m8 { background: #3232ff; }
|
||||
.m9 { background: #1919ff; } .m10 { background: #0000ff; }
|
||||
.m11 { background: #0000e5; } .m12 { background: #0000cc; } .m13 { background: #0000b2; }
|
||||
.m14 { background: #000099; } .m15 { background: #000033; }
|
||||
</style>
|
||||
<script type="text/javascript">
|
||||
var idx = -1;
|
||||
document.addEventListener("keydown", keyDownHandler, false);
|
||||
function keyDownHandler(e) {
|
||||
if (e.key == "Right" || e.key == "ArrowRight") {
|
||||
idx = Math.min(idx + 1, 28);
|
||||
} else if (e.key == "Left" || e.key == "ArrowLeft") {
|
||||
idx = Math.max(idx - 1, 0);
|
||||
} else {
|
||||
return;
|
||||
}
|
||||
location.replace('#tb-i' + idx);
|
||||
}
|
||||
</script>
|
||||
</head>
|
||||
<body>
|
||||
<nav class="small">
|
||||
<a href="#top">Top</a>
|
||||
<a href="#reliability">Reliability</a>
|
||||
<a href="#tb-i0">ᚠ</a>
|
||||
|
||||
</nav>
|
||||
<h1 id="top">IoC Analysis on Interrupts</h1>
|
||||
<h2>What is this?</h2>
|
||||
<p>
|
||||
This database consolidates the best, aka. highest Index of Coincidence (IoC) scores, for any given interrupt – considering all possible interrupt constellations. We look at the first 20 interrupts only, and try all combinations for these. But instead of looking at the whole chapter we only look at the text upto interrupt no. 21. This way we can test all the possibilities and, in case we have the right key length, find the key length with the highest probability. Since we tried all combinations for this shorter text, the complete text will be fully decrypted.
|
||||
</p>
|
||||
<p>
|
||||
Example:
|
||||
</p>
|
||||
<ul>
|
||||
<li>Input: ᛁ ᚹᚪᚱᚾ ᚣᚩᚢ ᛁᚠ ᚣᚩᚢ ᛞᚩᚾ ᛏ ᛏᛖᛚᛚ ᛗᛖ</li>
|
||||
<li>Interrupt: ᚩ</li>
|
||||
<li>Interrupt-limit: 2 <small>(with a limit of 3, the full string would be considered)</small></li>
|
||||
<li>IoC analysis on: ᛁ ᚹᚪᚱᚾ ᚣᚩᚢ ᛁᚠ ᚣᚩᚢ ᛞ</li>
|
||||
</ul>
|
||||
<p>
|
||||
Is it enough information though? Mostly. The three lowest examples have 349, 364, and 376 runes respectively. Meaning that, in the worst case, the frequency analysis will look at only 349 runes. For a key length of 25 it will leave only 14 runes per group. That is not very much but the best we can get. You could increase the interrupt count to 21 or 22 which would make it better but the execution time doubles<sup>1</sup> with each increment.
|
||||
</p>
|
||||
<p>
|
||||
<small><sup>1</sup> testing 20 interrupts takes approx. 38 hours (pages 0–55 with all interrupt runes). Or 30 seconds for a single test.</small>
|
||||
</p>
|
||||
|
||||
<h3 id="assumptions">Assumptions</h3>
|
||||
<dl>
|
||||
<dt id="a1">“Normal” english text</dt>
|
||||
<dd>
|
||||
IoC is based on the assumption that we know the underlying text (english) and that the text follows a normal character distribution. If the text was prepared to be extra hard to decrypt, one could have removed all letter ‘e’ to make IoC pretty much useless (there are a few 100+ pages books that do exactly that).
|
||||
<span>⤳ Well, let us hope we have normal texts.</span>
|
||||
</dd>
|
||||
<dt id="a2">Mono- and polyalphabetic substitution</dt>
|
||||
<dd>
|
||||
Each encrypted rune has a 1-to-1 mapping to its decrypted counterpart relative to its group. For polyalphabetic ciphers the groups are determined by cycling through different substitution alphabets. The number of groups is from now on described as key length.
|
||||
<br>
|
||||
It is completely irrelevant whether the encryption algorithm uses a Ceaser shift (variant), Atbash, Vigenere, or an Affine substition, as long as it is monoalphabetic (in its group), the IoC will stay the same.
|
||||
<span>⤳ The results do not apply to polyphonic or polygraphic ciphers.</span>
|
||||
</dd>
|
||||
<dt id="a3">Single rune keys</dt>
|
||||
<dd>
|
||||
If a polyalphabetic cipher is used, we assume the decryption is based on this rune alone. E.g., it does not look at the neighboring rune, nor words, nor its position in the text. Further, the decryption takes only one rune as input.
|
||||
<span>⤳ We can not detect bi-gram or tri-gram substitions or totient streams.</span>
|
||||
</dd>
|
||||
<dt id="a4">Key length</dt>
|
||||
<dd>
|
||||
We only consider key lengths of up to 32 runes. Longer keys will split the text too much, leaving too little data per group to analyze IoC. Even 32 is probably too high in most cases. You can see that in the results that the IoC values for longer key lengths have a tendency to be higher. Keep in mind that a key length of 30 on a text with just 300 runes will be a mere 10 runes per key group.
|
||||
<br>
|
||||
That said, there is still a reason for why we go up to 32 runes. Shorter keys will have, so to say, resonance frequencies. For example, a key length of 8 will have a similar IoCs for key lengths of 16 and 24 as it is just a multiple of 8.
|
||||
<span>⤳ Don’t focus too much on high IoC values at the upper key length limit unless it is a multiple of a shorter one.</span>
|
||||
</dd>
|
||||
<dt id="a5">Whitespace</dt>
|
||||
<dd>
|
||||
IoC does not care about whitespace, at least not in this analysis. Both, training data and LP paged were stripped of any whitespace before calculating the IoC. This means, if the given whitespace should be bogus, the IoC value would still be higher compared to other key lengths.
|
||||
<span>⤳ Whitespace does not affect the results.</span>
|
||||
</dd>
|
||||
<dt id="a6">One cipher per chapter</dt>
|
||||
<dd>
|
||||
So far we assumed that each chapter (grouped by its page artwork) has exactly one cipher. Thus, each IoC is calculated based on the entire chapter rather than per page. This gives more data for frequency analysis but will fail if the chapter should have more than one cipher (or change midway).
|
||||
<span>⤳ Will not detect if a chapter has multiple ciphers (e.g., one per page, sub-chapter, or line)</span>
|
||||
</dd>
|
||||
<dt id="a7">Order of decryption</dt>
|
||||
<dd>
|
||||
We assum the decryption starts at the beginning of a page. Even though this should not matter for IoC, since a mere revert would not change the frequency, it matters for the interrupt positions. Since we only look at the first X runes, the IoC of a reversed stream may be different. Further, the interrupt positions will not help you if you need to start from the back.
|
||||
<span>⤳ Reverse order does not change IoC, hence this results are also applicable.</span>
|
||||
</dd>
|
||||
</dl>
|
||||
|
||||
<h3 id="reliability">Reliability</h3>
|
||||
<p>
|
||||
The following table shows how many runes were considered while analyzing the IoC. Low value, low confidence. The darker the color is, the higher the chances are the results are accurate. Everything below <strong>384</strong> is far from ideal (16 runes per key group for a key length of 24). Everything above <strong>812</strong> is considered reliable (29 runes per key group for a key length of 28). Hence, values less than 384 have a white background and values above 812 have a dark blue one.
|
||||
</p>
|
||||
<table><tr class="rotate"><th></th><th><div>p0-2</div></th><th><div>p3-7</div></th><th><div>p8-14</div></th><th><div>p15-22</div></th><th><div>p23-26</div></th><th><div>p27-32</div></th><th><div>p33-39</div></th><th><div>p40-53</div></th><th><div>p54-55</div></th><th><div>0_warning</div></th><th><div>0_welcome</div></th><th><div>0_wisdom</div></th><th><div>0_koan_1</div></th><th><div>0_loss_of_divinity</div></th><th><div>jpg107-167</div></th><th><div>jpg229</div></th><th><div>p56_an_end</div></th><th><div>p57_parable</div></th></tr>
|
||||
<tr><th>ᚠ</th><td class="m2">419</td><td class="m9">641</td><td class="m7">594</td><td class="m4">484</td><td class="m6">537</td><td class="m2">416</td><td class="m15">815</td><td class="m3">472</td><td class="m0">308</td><td class="m0">184</td><td class="m3">465</td><td class="m0">157</td><td class="m9">652</td><td class="m13">755</td><td class="m0">319</td><td class="m0">89</td><td class="m0">85</td><td class="m0">95</td></tr>
|
||||
<tr class="small"><th>Total</th><td>729</td><td>1145</td><td>1729</td><td>1903</td><td>1021</td><td>1433</td><td>1680</td><td>3008</td><td>308</td><td>184</td><td>515</td><td>157</td><td>780</td><td>755</td><td>319</td><td>89</td><td>85</td><td>95</td></tr>
|
||||
</table>
|
||||
|
||||
<h2>IoC per interrupt</h2>
|
||||
<p>
|
||||
Lets look at the first result. Assuming the interrupt rune is ᚠ, we get the following table. Notice that the column in ‘p56_an_end’ has a few dark values, even though the used cipher is a totient function (which will not be detected as of assumption <a href="#assumptions">#2</a>). If you look back at the <a href="#reliability">previous table</a>, you will see that the whole chapter only has 85 runes. Even for a key length of 6 the runes per group is only 14 runes. It is just too little data to perform IoC and so it will contain false positives.
|
||||
</p>
|
||||
<p>
|
||||
Next, if you look at the ‘0_welcome’ column you will see peaks at key lengths 8, 16, and 24. The solution to this page was a 8-length vigenere key. This is a very typical pattern for such ciphers. Note, the last peak at 30 is due to the long key length. 465 / 30 is just 15.5 runes per group. So, IoC has more freedom to “optimize” the key – and thus you should stop looking too much into higher value key lengths. Everything above 24 is not that reliable anymore.
|
||||
</p>
|
||||
<p>
|
||||
<small>P.S.: you can use the left and right keys to navigate between the interrupts. Or the navigation at the top.</small>
|
||||
</p>
|
||||
|
||||
<h3 id="tb-i0">Interrupt 0: <b>ᚠ</b></h3><table><tr class="rotate"><th></th><th><div>p0-2</div></th><th><div>p3-7</div></th><th><div>p8-14</div></th><th><div>p15-22</div></th><th><div>p23-26</div></th><th><div>p27-32</div></th><th><div>p33-39</div></th><th><div>p40-53</div></th><th><div>p54-55</div></th><th><div>0_warning</div></th><th><div>0_welcome</div></th><th><div>0_wisdom</div></th><th><div>0_koan_1</div></th><th><div>0_loss_of_divinity</div></th><th><div>jpg107-167</div></th><th><div>jpg229</div></th><th><div>p56_an_end</div></th><th><div>p57_parable</div></th></tr>
|
||||
<tr><th>1</th><td class="m0">0.25</td><td class="m0">0.26</td><td class="m0">0.25</td><td class="m0">0.26</td><td class="m0">0.24</td><td class="m0">0.25</td><td class="m0">0.24</td><td class="m0">0.25</td><td class="m0">0.24</td><td class="m13">0.92</td><td class="m2">0.46</td><td class="m11">0.83</td><td class="m11">0.82</td><td class="m15">1.00</td><td class="m0">0.39</td><td class="m14">0.96</td><td class="m0">0.20</td><td class="m14">0.96</td></tr>
|
||||
<tr><th>2</th><td class="m0">0.32</td><td class="m0">0.30</td><td class="m0">0.30</td><td class="m0">0.31</td><td class="m0">0.28</td><td class="m0">0.32</td><td class="m0">0.26</td><td class="m0">0.31</td><td class="m0">0.26</td><td class="m12">0.89</td><td class="m6">0.64</td><td class="m12">0.86</td><td class="m11">0.85</td><td class="m15">1.00</td><td class="m0">0.38</td><td class="m12">0.88</td><td class="m1">0.41</td><td class="m10">0.80</td></tr>
|
||||
<tr><th>3</th><td class="m0">0.37</td><td class="m0">0.35</td><td class="m0">0.30</td><td class="m0">0.34</td><td class="m0">0.30</td><td class="m0">0.34</td><td class="m0">0.27</td><td class="m0">0.35</td><td class="m0">0.30</td><td class="m6">0.65</td><td class="m5">0.57</td><td class="m12">0.88</td><td class="m12">0.87</td><td class="m15">1.00</td><td class="m1">0.42</td><td class="m7">0.66</td><td class="m1">0.43</td><td class="m11">0.84</td></tr>
|
||||
<tr><th>4</th><td class="m0">0.36</td><td class="m0">0.32</td><td class="m0">0.33</td><td class="m0">0.35</td><td class="m0">0.31</td><td class="m0">0.36</td><td class="m0">0.28</td><td class="m0">0.36</td><td class="m0">0.33</td><td class="m13">0.91</td><td class="m12">0.86</td><td class="m13">0.91</td><td class="m12">0.88</td><td class="m15">0.98</td><td class="m0">0.37</td><td class="m7">0.68</td><td class="m2">0.46</td><td class="m12">0.88</td></tr>
|
||||
<tr><th>5</th><td class="m0">0.39</td><td class="m0">0.35</td><td class="m0">0.35</td><td class="m1">0.40</td><td class="m0">0.32</td><td class="m0">0.34</td><td class="m0">0.30</td><td class="m1">0.42</td><td class="m0">0.29</td><td class="m10">0.78</td><td class="m5">0.58</td><td class="m11">0.83</td><td class="m13">0.91</td><td class="m14">0.97</td><td class="m1">0.42</td><td class="m10">0.80</td><td class="m2">0.45</td><td class="m10">0.77</td></tr>
|
||||
<tr><th>6</th><td class="m0">0.39</td><td class="m0">0.35</td><td class="m0">0.35</td><td class="m1">0.41</td><td class="m0">0.33</td><td class="m0">0.40</td><td class="m0">0.28</td><td class="m0">0.39</td><td class="m0">0.33</td><td class="m4">0.54</td><td class="m8">0.72</td><td class="m11">0.83</td><td class="m12">0.89</td><td class="m14">0.95</td><td class="m1">0.41</td><td class="m0">0.39</td><td class="m1">0.41</td><td class="m6">0.64</td></tr>
|
||||
<tr><th>7</th><td class="m3">0.49</td><td class="m0">0.35</td><td class="m0">0.38</td><td class="m0">0.39</td><td class="m0">0.35</td><td class="m0">0.36</td><td class="m0">0.32</td><td class="m1">0.41</td><td class="m0">0.29</td><td class="m10">0.78</td><td class="m6">0.62</td><td class="m10">0.77</td><td class="m13">0.91</td><td class="m14">0.95</td><td class="m1">0.42</td><td class="m10">0.81</td><td class="m0">0.38</td><td class="m6">0.61</td></tr>
|
||||
<tr><th>8</th><td class="m0">0.39</td><td class="m0">0.37</td><td class="m0">0.36</td><td class="m1">0.43</td><td class="m0">0.35</td><td class="m0">0.36</td><td class="m0">0.31</td><td class="m0">0.40</td><td class="m2">0.48</td><td class="m8">0.71</td><td class="m13">0.90</td><td class="m9">0.77</td><td class="m13">0.92</td><td class="m13">0.94</td><td class="m1">0.41</td><td class="m0">0.21</td><td class="m1">0.43</td><td class="m0">0.36</td></tr>
|
||||
<tr><th>9</th><td class="m2">0.47</td><td class="m1">0.43</td><td class="m0">0.33</td><td class="m0">0.35</td><td class="m0">0.38</td><td class="m2">0.44</td><td class="m0">0.32</td><td class="m1">0.40</td><td class="m0">0.28</td><td class="m3">0.51</td><td class="m6">0.64</td><td class="m8">0.70</td><td class="m13">0.91</td><td class="m12">0.89</td><td class="m3">0.49</td><td class="m0">0.18</td><td class="m0">0.25</td><td class="m3">0.50</td></tr>
|
||||
<tr><th>10</th><td class="m2">0.44</td><td class="m0">0.38</td><td class="m0">0.39</td><td class="m2">0.45</td><td class="m0">0.38</td><td class="m0">0.38</td><td class="m0">0.32</td><td class="m4">0.54</td><td class="m0">0.32</td><td class="m6">0.63</td><td class="m6">0.63</td><td class="m5">0.61</td><td class="m14">0.96</td><td class="m12">0.90</td><td class="m1">0.42</td><td class="m2">0.47</td><td class="m0">0.33</td><td class="m4">0.53</td></tr>
|
||||
<tr><th>11</th><td class="m3">0.52</td><td class="m0">0.39</td><td class="m1">0.43</td><td class="m1">0.43</td><td class="m0">0.37</td><td class="m1">0.41</td><td class="m0">0.34</td><td class="m1">0.44</td><td class="m0">0.29</td><td class="m1">0.44</td><td class="m6">0.62</td><td class="m3">0.50</td><td class="m13">0.92</td><td class="m13">0.90</td><td class="m1">0.41</td><td class="m0">0.23</td><td class="m0">0.19</td><td class="m0">0.34</td></tr>
|
||||
<tr><th>12</th><td class="m3">0.52</td><td class="m2">0.44</td><td class="m0">0.39</td><td class="m3">0.52</td><td class="m1">0.40</td><td class="m2">0.47</td><td class="m0">0.30</td><td class="m3">0.51</td><td class="m0">0.35</td><td class="m5">0.57</td><td class="m8">0.73</td><td class="m8">0.72</td><td class="m12">0.89</td><td class="m12">0.87</td><td class="m0">0.30</td><td class="m0">–</td><td class="m0">0.18</td><td class="m0">0.08</td></tr>
|
||||
<tr><th>13</th><td class="m2">0.45</td><td class="m1">0.43</td><td class="m0">0.39</td><td class="m2">0.48</td><td class="m1">0.41</td><td class="m5">0.58</td><td class="m0">0.35</td><td class="m2">0.47</td><td class="m0">0.33</td><td class="m0">0.24</td><td class="m4">0.55</td><td class="m4">0.56</td><td class="m13">0.91</td><td class="m12">0.86</td><td class="m9">0.74</td><td class="m0">0.02</td><td class="m0">0.40</td><td class="m0">–</td></tr>
|
||||
<tr><th>14</th><td class="m5">0.57</td><td class="m0">0.38</td><td class="m2">0.44</td><td class="m1">0.42</td><td class="m3">0.50</td><td class="m2">0.47</td><td class="m0">0.33</td><td class="m2">0.44</td><td class="m0">0.31</td><td class="m3">0.49</td><td class="m8">0.70</td><td class="m3">0.50</td><td class="m12">0.90</td><td class="m11">0.84</td><td class="m0">0.36</td><td class="m0">–</td><td class="m0">–</td><td class="m0">0.18</td></tr>
|
||||
<tr><th>15</th><td class="m3">0.50</td><td class="m2">0.45</td><td class="m0">0.39</td><td class="m1">0.43</td><td class="m2">0.46</td><td class="m3">0.51</td><td class="m0">0.38</td><td class="m3">0.51</td><td class="m0">0.30</td><td class="m0">0.16</td><td class="m6">0.65</td><td class="m0">0.24</td><td class="m13">0.93</td><td class="m11">0.85</td><td class="m0">0.31</td><td class="m0">–</td><td class="m0">–</td><td class="m0">–</td></tr>
|
||||
<tr><th>16</th><td class="m2">0.44</td><td class="m2">0.47</td><td class="m0">0.40</td><td class="m2">0.45</td><td class="m2">0.45</td><td class="m2">0.46</td><td class="m0">0.37</td><td class="m2">0.47</td><td class="m3">0.49</td><td class="m0">0.18</td><td class="m9">0.75</td><td class="m0">0.24</td><td class="m12">0.89</td><td class="m11">0.83</td><td class="m0">0.32</td><td class="m0">–</td><td class="m0">–</td><td class="m0">–</td></tr>
|
||||
<tr><th>17</th><td class="m4">0.56</td><td class="m1">0.42</td><td class="m3">0.49</td><td class="m2">0.46</td><td class="m3">0.48</td><td class="m2">0.47</td><td class="m0">0.38</td><td class="m1">0.43</td><td class="m0">0.33</td><td class="m1">0.40</td><td class="m8">0.72</td><td class="m0">0.28</td><td class="m12">0.88</td><td class="m11">0.82</td><td class="m0">0.39</td><td class="m0">–</td><td class="m0">–</td><td class="m0">–</td></tr>
|
||||
<tr><th>18</th><td class="m3">0.50</td><td class="m2">0.45</td><td class="m2">0.45</td><td class="m1">0.42</td><td class="m1">0.42</td><td class="m4">0.54</td><td class="m0">0.37</td><td class="m3">0.51</td><td class="m0">0.38</td><td class="m0">0.05</td><td class="m7">0.66</td><td class="m0">0.29</td><td class="m12">0.89</td><td class="m10">0.78</td><td class="m0">0.38</td><td class="m0">–</td><td class="m0">–</td><td class="m0">–</td></tr>
|
||||
<tr><th>19</th><td class="m3">0.49</td><td class="m0">0.38</td><td class="m0">0.39</td><td class="m2">0.48</td><td class="m3">0.51</td><td class="m3">0.50</td><td class="m0">0.40</td><td class="m1">0.40</td><td class="m0">0.31</td><td class="m0">–</td><td class="m7">0.66</td><td class="m0">0.15</td><td class="m12">0.87</td><td class="m11">0.83</td><td class="m0">0.34</td><td class="m0">–</td><td class="m0">–</td><td class="m0">–</td></tr>
|
||||
<tr><th>20</th><td class="m3">0.49</td><td class="m2">0.46</td><td class="m2">0.44</td><td class="m2">0.46</td><td class="m2">0.45</td><td class="m2">0.45</td><td class="m0">0.37</td><td class="m5">0.59</td><td class="m0">0.27</td><td class="m0">0.22</td><td class="m6">0.64</td><td class="m0">0.28</td><td class="m12">0.88</td><td class="m11">0.85</td><td class="m2">0.45</td><td class="m0">–</td><td class="m0">–</td><td class="m0">–</td></tr>
|
||||
<tr><th>21</th><td class="m4">0.56</td><td class="m0">0.39</td><td class="m1">0.42</td><td class="m2">0.45</td><td class="m2">0.44</td><td class="m3">0.49</td><td class="m0">0.35</td><td class="m3">0.51</td><td class="m0">0.38</td><td class="m0">0.07</td><td class="m6">0.63</td><td class="m0">0.10</td><td class="m12">0.86</td><td class="m10">0.80</td><td class="m1">0.41</td><td class="m0">–</td><td class="m0">–</td><td class="m0">–</td></tr>
|
||||
<tr><th>22</th><td class="m3">0.51</td><td class="m2">0.47</td><td class="m4">0.53</td><td class="m1">0.43</td><td class="m1">0.40</td><td class="m2">0.48</td><td class="m1">0.41</td><td class="m2">0.45</td><td class="m0">0.33</td><td class="m0">–</td><td class="m6">0.61</td><td class="m0">0.35</td><td class="m12">0.86</td><td class="m11">0.81</td><td class="m0">0.35</td><td class="m0">–</td><td class="m0">–</td><td class="m0">–</td></tr>
|
||||
<tr><th>23</th><td class="m3">0.52</td><td class="m2">0.45</td><td class="m2">0.48</td><td class="m1">0.43</td><td class="m1">0.43</td><td class="m3">0.50</td><td class="m0">0.40</td><td class="m3">0.50</td><td class="m0">0.31</td><td class="m0">0.26</td><td class="m5">0.59</td><td class="m0">–</td><td class="m11">0.85</td><td class="m8">0.73</td><td class="m0">0.26</td><td class="m0">–</td><td class="m0">–</td><td class="m0">–</td></tr>
|
||||
<tr><th>24</th><td class="m3">0.48</td><td class="m3">0.49</td><td class="m2">0.45</td><td class="m3">0.49</td><td class="m2">0.45</td><td class="m2">0.47</td><td class="m1">0.40</td><td class="m2">0.47</td><td class="m1">0.41</td><td class="m0">–</td><td class="m7">0.65</td><td class="m0">0.37</td><td class="m11">0.84</td><td class="m9">0.75</td><td class="m0">0.32</td><td class="m0">–</td><td class="m0">–</td><td class="m0">–</td></tr>
|
||||
<tr><th>25</th><td class="m2">0.47</td><td class="m3">0.49</td><td class="m2">0.45</td><td class="m2">0.48</td><td class="m2">0.44</td><td class="m4">0.54</td><td class="m1">0.42</td><td class="m3">0.51</td><td class="m0">0.27</td><td class="m0">–</td><td class="m5">0.60</td><td class="m0">0.05</td><td class="m11">0.83</td><td class="m10">0.77</td><td class="m0">0.19</td><td class="m0">–</td><td class="m0">–</td><td class="m0">–</td></tr>
|
||||
<tr><th>26</th><td class="m1">0.41</td><td class="m3">0.52</td><td class="m1">0.44</td><td class="m2">0.45</td><td class="m3">0.51</td><td class="m5">0.59</td><td class="m0">0.38</td><td class="m3">0.49</td><td class="m0">0.27</td><td class="m0">–</td><td class="m5">0.57</td><td class="m0">0.06</td><td class="m11">0.82</td><td class="m8">0.73</td><td class="m5">0.57</td><td class="m0">–</td><td class="m0">–</td><td class="m0">–</td></tr>
|
||||
<tr><th>27</th><td class="m2">0.45</td><td class="m3">0.49</td><td class="m2">0.45</td><td class="m1">0.40</td><td class="m1">0.43</td><td class="m1">0.41</td><td class="m0">0.38</td><td class="m4">0.54</td><td class="m0">0.21</td><td class="m0">–</td><td class="m6">0.63</td><td class="m0">–</td><td class="m11">0.82</td><td class="m8">0.72</td><td class="m0">0.32</td><td class="m0">–</td><td class="m0">–</td><td class="m0">–</td></tr>
|
||||
<tr><th>28</th><td class="m2">0.47</td><td class="m1">0.42</td><td class="m1">0.43</td><td class="m1">0.43</td><td class="m2">0.45</td><td class="m1">0.42</td><td class="m0">0.36</td><td class="m2">0.46</td><td class="m0">0.22</td><td class="m0">0.07</td><td class="m5">0.60</td><td class="m0">–</td><td class="m9">0.76</td><td class="m8">0.69</td><td class="m0">0.16</td><td class="m0">–</td><td class="m0">–</td><td class="m0">–</td></tr>
|
||||
<tr><th>29</th><td class="m2">0.46</td><td class="m1">0.41</td><td class="m2">0.47</td><td class="m1">0.41</td><td class="m2">0.45</td><td class="m1">0.42</td><td class="m3">0.49</td><td class="m1">0.43</td><td class="m0">0.28</td><td class="m0">–</td><td class="m5">0.58</td><td class="m0">–</td><td class="m10">0.81</td><td class="m8">0.69</td><td class="m0">0.29</td><td class="m0">–</td><td class="m0">–</td><td class="m0">–</td><tr><th>30</th><td class="m2">0.45</td><td class="m3">0.50</td><td class="m2">0.44</td><td class="m1">0.42</td><td class="m1">0.44</td><td class="m2">0.45</td><td class="m1">0.41</td><td class="m2">0.48</td><td class="m0">0.21</td><td class="m0">–</td><td class="m6">0.61</td><td class="m0">–</td><td class="m10">0.81</td><td class="m8">0.69</td><td class="m0">0.32</td><td class="m0">–</td><td class="m0">–</td><td class="m0">–</td><tr><th>31</th><td class="m0">0.39</td><td class="m1">0.44</td><td class="m2">0.46</td><td class="m0">0.40</td><td class="m3">0.50</td><td class="m2">0.47</td><td class="m0">0.37</td><td class="m1">0.44</td><td class="m0">0.18</td><td class="m0">–</td><td class="m3">0.52</td><td class="m0">–</td><td class="m9">0.76</td><td class="m8">0.70</td><td class="m0">0.18</td><td class="m0">–</td><td class="m0">–</td><td class="m0">–</td><tr><th>32</th><td class="m1">0.41</td><td class="m2">0.48</td><td class="m3">0.51</td><td class="m1">0.41</td><td class="m2">0.47</td><td class="m2">0.46</td><td class="m0">0.38</td><td class="m1">0.44</td><td class="m0">0.30</td><td class="m0">–</td><td class="m3">0.50</td><td class="m0">–</td><td class="m10">0.79</td><td class="m7">0.68</td><td class="m0">0.14</td><td class="m0">–</td><td class="m0">–</td><td class="m0">–</td><tr class="small"><th>best</th><td>14</td><td>26</td><td>22</td><td>12</td><td>26</td><td>26</td><td>29</td><td>20</td><td>16</td><td>1</td><td>8</td><td>4</td><td>10</td><td>1</td><td>13</td><td>1</td><td>4</td><td>1</td></tr>
|
||||
</table>
|
||||
|
||||
<h2>What’s next?</h2>
|
||||
<p>
|
||||
Things to try:
|
||||
</p>
|
||||
<ul>
|
||||
<li>Use different IoC metrics. E.g., remove ‘e’ from alphabet and recalculate coincidence.</li>
|
||||
<li>Split text into two (alternating) parts and test each part separately on different key lengths.</li>
|
||||
<li>Not sure if it makes sense to analyze bigrams and trigrams in this case but feel free to try.</li>
|
||||
</ul>
|
||||
</body>
|
||||
</html>
|
||||
@@ -7,7 +7,6 @@ from InterruptDB import InterruptDB
|
||||
|
||||
RUNES = 'ᚠᚢᚦᚩᚱᚳᚷᚹᚻᚾᛁᛄᛇᛈᛉᛋᛏᛒᛖᛗᛚᛝᛟᛞᚪᚫᚣᛡᛠ'
|
||||
INVERT = False
|
||||
IOC_MIN_SCORE = 1.3
|
||||
KEY_MAX_SCORE = 0.05
|
||||
AFF_MAX_SCORE = 0.04
|
||||
IRP_F_ONLY = False
|
||||
@@ -45,9 +44,10 @@ def break_cipher(fname, candidates, solver, key_fn):
|
||||
key_score, key = key_fn(testcase).guess(kl, fn_similarity)
|
||||
if key_score > key_max_score:
|
||||
continue
|
||||
print(f' key_score: {key_score:.4f}, {key}')
|
||||
prio = (1 - key_score) * max(0, score)
|
||||
print(f' key_score: {prio:.4f}, {key}')
|
||||
print(' skip:', skips)
|
||||
txtname = f'{key_fn.__name__}.{key_score:.4f}_{fname}_{kl}.{irp}'
|
||||
txtname = f'{fname}_{prio:.4f}.{key_fn.__name__}.{irp}_{kl}'
|
||||
if INVERT:
|
||||
txtname += '.inv'
|
||||
while txtname in session_files:
|
||||
@@ -55,7 +55,8 @@ def break_cipher(fname, candidates, solver, key_fn):
|
||||
session_files.append(txtname)
|
||||
outfile = f'out/{txtname}.txt'
|
||||
with open(outfile, 'w') as f:
|
||||
f.write(f'{irp}, {kl}, {score:.4f}, {key}, {skips}\n')
|
||||
f.write(
|
||||
f'{irp}, {kl}, {score:.4f}, {key_score:.4f}, {key}, {skips}\n')
|
||||
slvr.output.file_output = outfile
|
||||
slvr.INTERRUPT = RUNES[irp]
|
||||
slvr.INTERRUPT_POS = skips
|
||||
@@ -66,7 +67,9 @@ def break_cipher(fname, candidates, solver, key_fn):
|
||||
#########################################
|
||||
# main
|
||||
#########################################
|
||||
db = InterruptDB.load() # 'db_secondary'
|
||||
db = InterruptDB.load('db_norm')
|
||||
# IOC_MIN_SCORE = 1.4 # for db_high
|
||||
IOC_MIN_SCORE = 0.55 # for db_norm
|
||||
|
||||
for fname in [
|
||||
'p0-2', # ???
|
||||
|
||||
Reference in New Issue
Block a user