Page Analysis: 0_warning

Count

Words: 45

Runes: 184

1-grams:
ᚠ:
1
ᚢ:
0
ᚦ:
3
ᚩ:
0
ᚱ:
8
ᚳ:
8
ᚷ:
0
ᚹ:
3
ᚻ:
4
ᚾ:
3
ᛁ:
27
ᛄ:
5
ᛇ:
10
ᛈ:
9
ᛉ:
2
ᛋ:
2
ᛏ:
0
ᛒ:
0
ᛖ:
12
ᛗ:
11
ᛚ:
2
ᛝ:
6
ᛟ:
2
ᛞ:
9
ᚪ:
16
ᚫ:
20
ᚣ:
11
ᛡ:
7
ᛠ:
3
2-grams:
ᚣᛁ:
6
ᚫᚪ:
5
ᛗᚫ:
4
ᛁᚳ:
4
ᛄᛁ:
3
ᚣᛖ:
3
ᛖᛈ:
3
ᛞᛁ:
3
ᚦᚫ:
3
ᚫᛡ:
3
ᛖᛗ:
3
ᛁᚪ:
3
ᚪᚣ:
3
ᚪᛗ:
2
ᚻᛖ:
2
ᛖᛁ:
2
ᛡᛁ:
2
ᛁᛗ:
2
ᛈᛄ:
2
ᛄᚫ:
2
ᚫᚫ:
2
ᚫᛞ:
2
ᛁᛉ:
2
ᛚᚱ:
2
ᛞᛗ:
2
ᚫᛝ:
2
ᛇᚫ:
2
ᛁᛇ:
2
ᛇᚪ:
2
ᚪᛡ:
2
ᛇᛁ:
2
ᛁᛈ:
2
ᛁᛞ:
2
ᛟᛁ:
2
ᛡᚪ:
2
ᚪᚳ:
2
ᚫᛗ:
2
ᛞᚫ:
2
ᛈᛈ:
2
ᛈᚱ:
2
ᛗᛁ:
2
ᛖᚣ:
2
ᛁᛖ:
2
ᚱᛝ:
1
ᛝᚱ:
1
ᚱᚪ:
1
ᛗᚹ:
1
ᚹᛄ:
1
ᛁᚻ:
1
ᛁᛡ:
1
ᚫᚣ:
1
ᚣᚹ:
1
ᚹᛠ:
1
ᛠᚪ:
1
ᚪᚫ:
1
ᚫᚾ:
1
ᚾᚣ:
1
ᛉᛞ:
1
ᛁᛋ:
1
ᛋᛇ:
1
ᛇᛝ:
1
ᛝᛚ:
1
ᚱᛇ:
1
ᛇᚦ:
1
ᛡᛞ:
1
ᛝᛇ:
1
ᚫᛄ:
1
ᛈᛇ:
1
ᛇᚣ:
1
ᛝᚻ:
1
ᚻᛁ:
1
ᚳᛟ:
1
ᛁᛠ:
1
ᛠᛖ:
1
ᛗᚳ:
1
ᚳᚦ:
1
ᚪᛇ:
1
ᛡᚣ:
1
ᛉᛋ:
1
ᛋᛁ:
1
ᚪᛖ:
1
ᛗᛞ:
1
ᛁᚦ:
1
ᚳᚠ:
1
ᚠᚣ:
1
ᚣᚳ:
1
ᚳᚫ:
1
ᚫᛇ:
1
ᚳᛖ:
1
ᛖᛇ:
1
ᚪᛞ:
1
ᛞᛚ:
1
ᚱᚹ:
1
ᚹᛁ:
1
ᛁᚣ:
1
ᛁᚾ:
1
ᚾᛁ:
1
ᚱᛟ:
1
ᛗᛇ:
1
ᛇᚱ:
1
+20 others
3-grams:
ᚦᚫᛡ:
3
ᚪᚣᛁ:
3
ᚣᛖᛈ:
2
ᛖᛈᛄ:
2
ᛈᛄᚫ:
2
ᛄᚫᚫ:
2
ᚫᚫᛞ:
2
ᛞᛗᚫ:
2
ᛗᚫᛝ:
2
ᛇᚪᛡ:
2
ᚫᛡᚪ:
2
ᚫᚪᚣ:
2
ᛈᛈᚱ:
2
ᛖᛗᛁ:
2
ᚱᛝᚱ:
1
ᛝᚱᚪ:
1
ᚱᚪᛗ:
1
ᚪᛗᚹ:
1
ᛗᚹᛄ:
1
ᚹᛄᛁ:
1
ᛄᛁᚻ:
1
ᛁᚻᛖ:
1
ᚻᛖᛁ:
1
ᛖᛁᛡ:
1
ᛁᛡᛁ:
1
ᛡᛁᛗ:
1
ᛁᛗᚫ:
1
ᛗᚫᚣ:
1
ᚫᚣᚹ:
1
ᚣᚹᛠ:
1
ᚹᛠᚪ:
1
ᛠᚪᚫ:
1
ᚪᚫᚾ:
1
ᚫᚾᚣ:
1
ᚾᚣᛖ:
1
ᚫᛞᛁ:
1
ᛞᛁᛉ:
1
ᛁᛉᛞ:
1
ᛉᛞᛁ:
1
ᛞᛁᛋ:
1
ᛁᛋᛇ:
1
ᛋᛇᛝ:
1
ᛇᛝᛚ:
1
ᛝᛚᚱ:
1
ᛚᚱᛇ:
1
ᚱᛇᚦ:
1
ᛇᚦᚫ:
1
ᚫᛡᛞ:
1
ᛡᛞᛗ:
1
ᚫᛝᛇ:
1
+116 others
4-grams:
ᚣᛖᛈᛄ:
2
ᛖᛈᛄᚫ:
2
ᛈᛄᚫᚫ:
2
ᛄᚫᚫᛞ:
2
ᛞᛗᚫᛝ:
2
ᚦᚫᛡᚪ:
2
ᚫᚪᚣᛁ:
2
ᚱᛝᚱᚪ:
1
ᛝᚱᚪᛗ:
1
ᚱᚪᛗᚹ:
1
ᚪᛗᚹᛄ:
1
ᛗᚹᛄᛁ:
1
ᚹᛄᛁᚻ:
1
ᛄᛁᚻᛖ:
1
ᛁᚻᛖᛁ:
1
ᚻᛖᛁᛡ:
1
ᛖᛁᛡᛁ:
1
ᛁᛡᛁᛗ:
1
ᛡᛁᛗᚫ:
1
ᛁᛗᚫᚣ:
1
ᛗᚫᚣᚹ:
1
ᚫᚣᚹᛠ:
1
ᚣᚹᛠᚪ:
1
ᚹᛠᚪᚫ:
1
ᛠᚪᚫᚾ:
1
+149 others

Double-Rune Occurrence

The following analysis looks at two neighboring runes. Whenever two identical runes appear one after another, the number sequence will print a “1” on dark background. Rune difference looks at the shortest distance between two neighbors. Maximum value is 14 if they are farthest apart. The value is zero if they are identical.

Note: Hover on a cell to see the offset in the file.

Double Runes:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
.
.
.
.
.
.
.
.
1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
.
.
1
.
.
.
.
.
Rune Difference:
12
12
9
5
12
4
1
2
10
8
12
12
9
6
1
10
8
4
1
13
12
8
5
2
14
0
2
13
4
9
13
5
3
9
1
13
8
10
6
2
4
4
6
4
9
13
14
1
2
12
3
12
2
2
3
1
14
13
13
4
6
4
13
2
5
12
12
11
10
1
14
3
6
2
3
12
12
3
1
13
4
1
5
14
6
8
9
4
13
8
6
2
3
10
5
3
8
9
6
6
13
2
5
13
6
13
1
1
3
13
3
3
13
8
5
2
14
0
2
2
1
2
13
1
1
3
0
9
11
12
13
2
6
7
8
14
1
9
5
13
3
8
8
1
9
8
8
13
14
2
13
11
4
1
10
8
12
1
2
13
8
6
5
8
11
2
1
14
11
14
3
1
9
4
0
10
5
0
9
10
1
14
5

Index of Coincidence (IoC)

Quick IoC recap: Normal english IoC is about 1.77. Values below 1.4 are highly unlikely to be anywhat meaningful. Predicting english text with IoC gets worse if the text is very short.

Here we are considering to either ᚠ being an interrupt; or it's inverse ᛠ. The numbers (1–32) represent the key length. With a key length of 5, every fifth rune will be decrypted with the same alphabet.

Note: the darker the cell, the better the prediction. The runes per length columns influences the results of the other columns; so if this is low, the other columns are not reliable.

IoC-highIoC-normRunes / keylen
11.881.910.920.92184184
21.891.920.890.929292
31.992.050.650.666161
41.861.910.910.914646
51.751.780.780.843636
62.012.120.540.583030
71.972.040.780.782626
81.731.800.710.772323
92.332.380.510.512020
101.851.930.630.721818
112.122.040.440.541616
121.902.050.570.421515
132.002.360.240.241414
142.052.150.490.521313
151.881.950.160.301212
162.041.970.180.391111
171.902.200.400.401010
182.342.400.050.271010
192.072.080.2499
201.861.970.220.2299
211.742.090.070.1288
222.091.960.0888
231.982.190.260.1988
241.671.8677
251.621.970.0477
262.112.420.0177
272.162.1866
281.922.360.0766
292.212.4966
302.022.1666
311.722.0655
321.961.9955
best182912

Modulo IoC

This section explores the idea of multiple alphabet-sets alternating. For example, have two or three Vigenere ciphers that switch after each rune. A Vigenere with key length 3 (ABC) plus another Vigenere with key length 5 (DEFGH) will generate a pattern that only repeats after 30 runes (ADBECFAGBHCDAEBFCGAHBDCEAFBGCH). So the first group will represent every 2nd rune starting with the first, and the second group will contain every 2nd rune starting with the second.

There are two main distinctions. Interrupt-first-then-mod assumes that an interrupt will pause the alternation between the different groups. Mod-first-then-interrupt assumes that an interrupt will pause the key alternation within that group. Lets look at the example Vig(3) + Vig(5). With the first, the decryption sequence is: Vig(3)[0], interrupt, Vig(5)[0], Vig(3)[1], etc. With the second, the decryption sequence is: Vig(3)[0], interrupt, Vig(3)[1], Vig(5)[0], etc. Note that the second decryption still switched to Vig(5) but was ignored because it was an interrupt.

Note: The row header format is {interrupt}.{mod}.{offset}. “ᚠ.2.0” means, assume the interrupt is ᚠ, divide the data into two sets, then look at the first set (rune at index 0, rune at index 2, etc.). The column shows the keylength for which the IoC was calculated. In the previous example, with a key length of 7, indices 0, 14, 28, ... are part of one alphabet, and indices 2, 17, 30, ... are part of another alphabet.

Mod-IoC is disabled on solved pages

Pattern IoC

This section looks at different ways to extend a short key into a longer one. The result of the expansion is still a plain Vigenere-like encryption but the key is so long that we would not be able to find it with IoC analysis. However, we can use the fact that the same letters appear again and so there are less alphabets than the key length.

The two mirror pattern variants simply flip the key in reverse and append it to the original key. For example, the key ABCD will become ABCDDCBA (Variant A) or ABCDCB (Variant B). Both keys will repeat after that. Notice how the first variant will produce double letters (DD and AA) and the second not.

The shift pattern simply offsets the key by one and appends this permutation to the key. For example, ABCD becomes ABCDBCDACDABDABC. Each key length n (here 4) has n - 1 shifts. The example before was shift = 1. The other two are ABCDCDAB (shift=2) and ABCDDABCCDABBCDA (shift=3). And again, like with the mirror pattern, we greatly increase the key length without increasing the alphabet count.

Note: while the column in the mirror pattern represents the key length, the column in the shift pattern is not the key length. Instead, the key length is given in the row title, e.g., “ᚠ.5”. The column header represents the key shift variation.

Pattern-IoC is disabled on solved pages

Running IoC

This section perfoms a running IoC with a window size on the whole text. For example, a window size of 50 will look at the first 50 runes and calculate the IoC (high). This will be the first value in the list. The text is offsetted by one and the next 50 runes are evaluated. This contiunes to the last set of 50 runes.

Same rules apply as to normal IoC; an IoC on 20 runes is just too small to get a meaningful result. But it helps to get the bigger picture ;).

Window size 120:
1.76
1.81
1.83
1.85
1.88
1.86
1.93
1.93
1.87
1.88
1.86
1.86
1.87
1.86
1.86
1.84
1.82
1.84
1.86
1.90
1.86
1.87
1.87
1.87
1.88
1.90
1.91
1.89
1.88
1.88
1.91
1.91
1.91
1.93
1.94
1.96
1.98
1.98
2.01
2.03
2.01
2.07
2.08
2.10
2.07
2.08
2.05
2.01
2.08
2.05
2.04
2.00
2.03
2.00
1.99
1.93
1.91
1.93
1.92
1.88
1.88
1.86
1.86
1.93
1.95
Window size 80:
1.61
1.69
1.67
1.67
1.74
1.74
1.76
1.86
1.78
1.81
1.90
1.80
1.84
1.77
1.78
1.72
1.69
1.72
1.73
1.77
1.73
1.81
1.84
1.94
1.96
1.97
1.96
1.96
1.97
1.90
1.90
1.87
1.77
1.86
1.82
1.83
1.83
1.83
1.84
1.92
1.86
1.92
1.94
1.94
1.95
1.95
2.01
1.95
1.96
1.85
1.82
1.88
1.89
1.85
1.85
1.78
1.77
1.77
1.78
1.78
1.79
1.75
1.72
1.74
1.80
1.74
1.80
1.85
1.80
1.90
1.89
1.90
1.97
1.97
1.97
2.02
1.99
1.99
2.02
2.06
2.06
2.06
2.13
2.19
2.13
2.07
2.02
1.93
1.98
2.02
1.95
1.95
1.95
2.02
1.97
1.94
1.95
1.95
1.97
1.95
1.95
1.90
1.95
1.95
1.95
Window size 50:
1.47
1.47
1.47
1.59
1.63
1.75
1.75
1.82
1.70
1.87
1.92
1.80
1.92
1.82
1.78
1.75
1.70
1.70
1.87
1.85
1.73
1.78
1.78
1.78
1.89
1.92
1.80
1.82
1.80
1.70
1.73
1.85
1.68
1.68
1.70
1.73
1.75
1.94
1.89
1.92
2.04
1.99
2.04
2.04
2.04
2.06
1.96
1.94
2.01
1.87
1.87
1.87
1.87
1.87
1.89
1.75
1.82
1.87
1.92
1.80
1.75
1.68
1.56
1.73
1.78
1.68
1.59
1.59
1.56
1.70
1.68
1.80
1.85
1.89
1.87
1.82
1.87
1.85
1.80
1.80
1.73
1.73
1.80
1.96
1.85
1.82
1.82
1.73
1.73
1.80
1.73
1.73
1.63
1.70
1.75
1.75
1.89
1.94
1.96
1.99
1.96
1.94
2.08
1.92
2.01
1.96
1.96
1.92
1.96
1.99
2.11
2.25
2.37
2.27
2.23
2.11
2.06
2.06
2.13
2.15
2.20
2.13
2.08
2.11
1.96
1.94
1.80
1.85
1.85
1.87
1.92
1.80
1.92
1.99
1.96
Window size 30:
1.27
1.27
1.53
1.53
1.47
1.40
1.33
1.27
1.07
1.07
1.27
1.13
1.20
1.13
1.40
1.13
1.20
1.53
1.60
1.73
1.60
1.60
1.67
1.87
2.13
2.33
2.07
2.20
2.07
2.07
2.20
2.13
2.07
2.20
1.87
2.00
2.00
2.00
2.07
2.07
1.87
1.93
1.93
1.80
1.80
1.80
1.67
1.73
1.87
1.67
1.53
1.73
1.60
1.27
1.47
1.27
1.33
1.60
1.67
1.40
1.67
1.60
1.60
1.73
1.93
1.73
1.60
1.67
1.53
1.67
1.73
1.80
1.73
1.93
1.87
1.80
1.73
1.80
1.80
1.80
1.73
1.47
1.47
1.73
1.53
1.53
1.40
1.20
1.40
1.67
1.60
2.00
1.73
1.87
1.87
1.73
1.93
1.87
1.93
1.67
1.67
1.67
1.73
1.73
1.73
1.73
1.80
1.60
1.60
1.73
1.73
1.60
1.73
1.60
1.67
1.60
1.73
1.93
1.87
2.07
2.07
2.20
2.53
2.40
2.07
2.13
1.87
1.87
1.93
2.00
2.20
2.20
2.47
2.53
2.53
2.53
2.53
2.27
2.47
2.40
2.40
2.33
2.27
2.40
2.27
2.20
2.00
2.00
2.00
2.00
1.73
1.67
1.87
2.00
1.93
Window size 20:
1.22
1.07
1.22
1.37
1.22
1.22
1.37
1.68
1.37
1.68
1.53
1.37
1.68
1.37
1.37
0.92
0.76
0.76
0.92
0.92
0.92
0.92
1.22
1.22
1.68
1.83
1.68
1.68
1.37
1.37
1.83
1.68
1.68
1.83
1.83
1.98
1.98
2.59
1.98
2.44
2.29
2.29
2.44
2.44
2.14
2.59
2.14
1.98
2.75
1.98
1.68
1.83
1.98
1.37
1.37
0.92
0.92
0.92
1.07
0.92
0.92
1.07
0.92
0.92
1.37
1.22
1.22
1.68
1.37
1.37
1.68
1.68
1.83
1.98
2.29
1.98
1.53
1.68
1.53
1.53
1.53
1.37
1.37
1.83
1.68
1.68
1.68
1.83
1.83
1.83
1.68
1.68
1.22
1.37
1.37
1.22
1.22
1.07
1.37
1.37
1.53
1.53
1.53
1.53
1.68
1.53
1.83
1.53
1.68
1.68
1.68
1.98
2.14
2.14
1.98
1.98
1.83
1.83
1.53
1.68
1.53
1.37
1.53
1.53
1.37
1.68
1.68
1.98
2.14
2.44
2.44
2.29
2.75
2.90
2.59
2.75
2.90
2.44
2.44
2.29
2.59
2.90
2.90
2.90
2.75
2.59
2.14
1.98
2.14
2.29
1.83
1.68
1.68
2.29
1.98
1.37
1.53
1.53
1.53
1.37
1.53
1.37
1.68
1.37
1.37

Concealment Analysis

Concealment ciphers hide text in plain sight. Here we look at every n-th word, as well as every first and last letter of each word. That is performed on all possible veriations. The numbers inside the parenthesis are the IoC analysis on the selected text as high / norm.

Pick every 1. word

Words (IoC: 1.857 / 0.917):
R NGRAMW JIHEIIAI MAEYW EAAAEN YEP JAEAED IXDISEO NGLREO THAEIA DMAENG EOAE JI EOAIAI EOIPEO YI DMAENGHICOEI EAEMC THAEIAA EOAIAY IXSIAEIMDI THAEIAA CFY CAE MAEEO ICEEO AEA DLRWI YEP JAEAED AEA YI NIPPROEI DAEMEOREMIC NGEYEM IEYIA YI NGAEACP AEA YIEA MIANJIAP EAAEA RHH EP PRDAIC
Pick every first letter (IoC: 1.728 / 0.955):
R
NG
J
M
EA
Y
J
I
NG
TH
D
EO
J
EO
EO
Y
D
EA
TH
EO
I
TH
C
C
M
I
AE
D
Y
J
AE
Y
N
D
NG
I
Y
NG
AE
Y
M
EA
R
E
P
Pick every last letter (IoC: 2.929 / 0.000):
R
W
I
W
N
P
D
EO
EO
IA
NG
AE
I
I
EO
I
I
C
A
Y
I
A
Y
AE
EO
EO
A
I
P
D
A
I
I
C
M
A
I
P
A
A
P
A
H
P
C

Pick every 2. word

Start with 1. word

Words (IoC: 1.788 / 0.986):
R JIHEIIAI EAAAEN JAEAED NGLREO DMAENG JI EOIPEO DMAENGHICOEI THAEIAA IXSIAEIMDI CFY MAEEO AEA YEP AEA NIPPROEI NGEYEM YI AEA MIANJIAP RHH PRDAIC
Pick every first letter (IoC: 1.261 / 0.487):
R
J
EA
J
NG
D
J
EO
D
TH
I
C
M
AE
Y
AE
N
NG
Y
AE
M
R
P
Pick every last letter (IoC: 2.866 / 0.000):
R
I
N
D
EO
NG
I
EO
I
A
I
Y
EO
A
P
A
I
M
I
A
P
H
C

Start with 2. word

Words (IoC: 1.817 / 0.957):
NGRAMW MAEYW YEP IXDISEO THAEIA EOAE EOAIAI YI EAEMC EOAIAY THAEIAA CAE ICEEO DLRWI JAEAED YI DAEMEOREMIC IEYIA NGAEACP YIEA EAAEA EP
Pick every first letter (IoC: 2.009 / 0.765):
NG
M
Y
I
TH
EO
EO
Y
EA
EO
TH
C
I
D
J
Y
D
I
NG
Y
EA
E
Pick every last letter (IoC: 2.385 / 0.388):
W
W
P
EO
IA
AE
I
I
C
Y
A
AE
EO
I
D
I
C
A
P
A
A
P

Pick every 3. word

Start with 1. word

Words (IoC: 1.946 / 0.827):
R MAEYW JAEAED THAEIA JI YI THAEIAA THAEIAA MAEEO DLRWI AEA DAEMEOREMIC YI YIEA RHH
Pick every first letter (IoC: 2.762 / 0.012):
R
M
J
TH
J
Y
TH
TH
M
D
AE
D
Y
Y
R
Pick every last letter (IoC: 3.314 / 0.000):
R
W
D
IA
I
I
A
A
EO
I
A
C
I
A
H

Start with 2. word

Words (IoC: 1.495 / 0.722):
NGRAMW EAAAEN IXDISEO DMAENG EOAIAI DMAENGHICOEI EOAIAY CFY ICEEO YEP YI NGEYEM NGAEACP MIANJIAP EP
Pick every first letter (IoC: 1.933 / 0.840):
NG
EA
I
D
EO
D
EO
C
I
Y
Y
NG
NG
M
E
Pick every last letter (IoC: 3.038 / 0.000):
W
N
EO
NG
I
I
Y
Y
EO
P
I
M
P
P
P

Start with 3. word

Words (IoC: 2.133 / 0.641):
JIHEIIAI YEP NGLREO EOAE EOIPEO EAEMC IXSIAEIMDI CAE AEA JAEAED NIPPROEI IEYIA AEA EAAEA PRDAIC
Pick every first letter (IoC: 1.381 / 0.607):
J
Y
NG
EO
EO
EA
I
C
AE
J
N
I
AE
EA
P
Pick every last letter (IoC: 3.314 / 0.000):
I
P
EO
AE
EO
C
I
AE
A
D
I
A
A
A
C

Pick every 4. word

Start with 1. word

Words (IoC: 1.930 / 0.844):
R EAAAEN NGLREO JI DMAENGHICOEI IXSIAEIMDI MAEEO YEP NIPPROEI YI MIANJIAP PRDAIC
Pick every first letter (IoC: 0.879 / 0.105):
R
EA
NG
J
D
I
M
Y
N
Y
M
P
Pick every last letter (IoC: 5.273 / 0.000):
R
N
EO
I
I
I
EO
P
I
I
P
C

Start with 2. word

Words (IoC: 1.645 / 0.872):
NGRAMW YEP THAEIA EOAIAI EAEMC THAEIAA ICEEO JAEAED DAEMEOREMIC NGAEACP EAAEA
Pick every first letter (IoC: 1.582 / 0.808):
NG
Y
TH
EO
EA
TH
I
J
D
NG
EA
Pick every last letter (IoC: 1.582 / 0.808):
W
P
IA
I
C
A
EO
D
C
P
A

Start with 3. word

Words (IoC: 1.710 / 0.937):
JIHEIIAI JAEAED DMAENG EOIPEO THAEIAA CFY AEA AEA NGEYEM AEA RHH
Pick every first letter (IoC: 2.109 / 0.665):
J
J
D
EO
TH
C
AE
AE
NG
AE
R
Pick every last letter (IoC: 3.164 / 0.000):
I
D
NG
EO
A
Y
A
A
M
A
H

Start with 4. word

Words (IoC: 2.351 / 0.422):
MAEYW IXDISEO EOAE YI EOAIAY CAE DLRWI YI IEYIA YIEA EP
Pick every first letter (IoC: 2.636 / 0.137):
M
I
EO
Y
EO
C
D
Y
I
Y
E
Pick every last letter (IoC: 2.636 / 0.137):
W
EO
AE
I
Y
AE
I
I
A
A
P

Pick every 5. word

Start with 1. word

Words (IoC: 2.351 / 0.422):
R YEP DMAENG YI IXSIAEIMDI ICEEO AEA IEYIA MIANJIAP
Pick every first letter (IoC: 3.222 / 0.000):
R
Y
D
Y
I
I
AE
I
M
Pick every last letter (IoC: 2.417 / 0.357):
R
P
NG
I
I
EO
A
A
P

Start with 2. word

Words (IoC: 2.032 / 0.741):
NGRAMW JAEAED EOAE DMAENGHICOEI THAEIAA AEA YI YI EAAEA
Pick every first letter (IoC: 0.806 / 0.032):
NG
J
EO
D
TH
AE
Y
Y
EA
Pick every last letter (IoC: 4.833 / 0.000):
W
D
AE
I
A
A
I
I
A

Start with 3. word

Words (IoC: 1.718 / 0.944):
JIHEIIAI IXDISEO JI EAEMC CFY DLRWI NIPPROEI NGAEACP RHH
Pick every first letter (IoC: 0.806 / 0.032):
J
I
J
EA
C
D
N
NG
R
Pick every last letter (IoC: 4.833 / 0.000):
I
EO
I
C
Y
I
I
P
H

Start with 4. word

Words (IoC: 1.447 / 0.674):
MAEYW NGLREO EOAIAI THAEIAA CAE YEP DAEMEOREMIC AEA EP
Pick every first letter (IoC: 0.000 / 0.000):
M
NG
EO
TH
C
Y
D
AE
E
Pick every last letter (IoC: 1.611 / 0.837):
W
EO
I
A
AE
P
C
A
P

Start with 5. word

Words (IoC: 1.524 / 0.750):
EAAAEN THAEIA EOIPEO EOAIAY MAEEO JAEAED NGEYEM YIEA PRDAIC
Pick every first letter (IoC: 0.806 / 0.032):
EA
TH
EO
EO
M
J
NG
Y
P
Pick every last letter (IoC: 0.806 / 0.032):
N
IA
EO
Y
EO
D
M
A
C