Files
relikd dbc709da07 761
2021-03-04 22:07:33 +01:00

345 lines
11 KiB
Python
Executable File

#!/usr/bin/env python3
import os
import wave
import struct
TRACK_LEN = 146.468
SAMPLE_LEN = 6459264 # hard coded so we dont need to load the file
SAMPLING = 8 # take every x-th frame
SMOOTH_WINDOW = 2 # gaussian window size X +- window
END_TIMES = [
10.639, 15.914, 28.937, 32.239, 33.590, 38.875, 42.408,
45.919, 49.475, 54.763, 72.301, 74.172, 81.219, 82.339,
92.900, 99.753, 100.654, 105.919, 114.771, 146.468]
def flip_bits(bits):
return bits.replace('1', '_').replace('0', '1').replace('_', '0')
def bin_to_hex(binary_str):
ret = ''
for i in range(0, len(binary_str), 8):
ret += '{:02X}'.format(int(binary_str[i:i + 8], 2))
return ret
def bin_to_text(binary_str):
ret = ''
for i in range(0, len(binary_str), 8):
ret += chr(int(binary_str[i:i + 8], 2))
return ret
def oneChannel(fname, chanIdx, maxread=None):
f = wave.open(fname, 'rb')
c_chn = f.getnchannels()
c_frm = f.getnframes()
if maxread:
c_frm = min(maxread, c_frm)
assert f.getsampwidth() == 2
s = f.readframes(c_frm)
f.close()
unpstr = '<{0}h'.format(c_frm * c_chn)
x = list(struct.unpack(unpstr, s))
return x[chanIdx::c_chn]
def find_db_peaks(wav_filename, threshold, write_to=None):
res = oneChannel(wav_filename, 1) # 100000
if len(res) != SAMPLE_LEN:
print('WARN: file sample rate mismatch with SAMPLE_LEN')
with open(write_to, 'wb') as fo:
# apply a rough gaussian smoothing
ftlr_rng = range(-SMOOTH_WINDOW, SMOOTH_WINDOW + 1)
for i in range(SMOOTH_WINDOW, len(res) - SMOOTH_WINDOW, SAMPLING):
z = [res[i + x] * (1 / (abs(x) + 1)) for x in ftlr_rng]
z = sum(z)
f = abs(z) > 400 # threshold
fo.write(b'\xFF' if f else b'\x00')
def fill_gaps(fname, window_size, min_count, threshold=128, write_to=None):
window = [0] * window_size
with open(write_to, 'wb') as fo:
with open(fname, 'rb') as fi:
for x in fi.read():
window.pop(0)
window.append(1 if x > threshold else 0)
f = sum(window) > min_count
fo.write(b'\xFF' if f else b'\x00')
def find_db_change(fname, threshold=128, write_to=None):
res = [(0, False)]
prev = False
with open(fname, 'rb') as fi:
for i, x in enumerate(fi.read()):
f = x > threshold
if f != prev:
prev = f
res.append((i, f))
with open(write_to, 'w') as fo:
for x in res:
fo.write('{}: {}\n'.format(*x))
# fo.write('\n'.join(['{}: {}'.format(*x) for x in res]))
def find_signal_midpoints(fname):
res = [] # (pos, width, dist_to_prev)
prev = 0
with open(fname, 'r') as fi:
lines = fi.readlines()
for x, y in zip(lines[1::2], lines[2::2]):
x = int(x.split(':')[0])
y = int(y.split(':')[0])
w = y - x
x += int(w / 2) # center point
res.append((x, w, x - prev))
prev = x
return res
def analyze_midpoints(midpoints_list, min_frames):
res = [] # (frame-no, time, dist-to-prev, type 'S-M-E')
typ = 'E' # marks first as [S]tart
for x, width, dist in midpoints_list:
if width < min_frames:
continue
typ = 'S' if typ == 'E' else 'M'
x *= SAMPLING
at_time = x / SAMPLE_LEN * TRACK_LEN
dist *= SAMPLING
for i, end_time in enumerate(END_TIMES):
if abs(end_time - at_time) < 0.100: # accurate within 100 ms
typ = 'E'
del END_TIMES[i] # keeps count if all are used up
break
res.append((x, at_time, dist, typ))
if len(END_TIMES) > 0:
if END_TIMES[0] > res[-1][1]:
for x in END_TIMES:
fn = round(x / TRACK_LEN * SAMPLE_LEN)
res.append((fn, x, fn - res[-1][0], 'E'))
else:
print('These endpoints were not found:')
print(END_TIMES) # double check
return res
def find_common_frame_dist(arr):
arr = [x[2] for x in arr if x[3] != 'S']
min_dist = min(arr)
print('Smallest common divisor: {}'.format(min_dist))
best_match = min_dist
best_sum = 999999
for tx in range(min_dist - 200, min_dist + 200 + 1):
subsum = 0
for x in arr:
x /= tx
x -= round(x)
subsum += x * x # least square distance
if subsum < best_sum:
best_sum = subsum
best_match = tx
print('Best matching frame dist: {}'.format(best_match))
return best_match
def analyze_db_peaks(wav_file, force=False):
print('761')
print('===')
print('Track length:', TRACK_LEN)
print('Total frames:', SAMPLE_LEN)
if not os.path.isdir('tmp'):
os.mkdir('tmp')
tmp1 = 'tmp/wav-peak-analysis_1.dat'
tmp2 = 'tmp/wav-peak-analysis_2.dat'
tmp3 = 'tmp/wav-peak-analysis_3.txt'
if force or not os.path.isfile(tmp1):
find_db_peaks(wav_file, 400, write_to=tmp1)
if force or not os.path.isfile(tmp2):
fill_gaps(tmp1, window_size=80, min_count=20, write_to=tmp2)
# force = True
if force or not os.path.isfile(tmp3):
find_db_change(tmp2, write_to=tmp3)
points = find_signal_midpoints(tmp3)
points = analyze_midpoints(points, min_frames=10)
freq = find_common_frame_dist(points)
# if times between 96.68-96.79 and 70.10-70.21 are sampled differently
# freq /= 2 # use *2 or /2 to decrease or increase sampling frequency
print('''
The columns are as follows:
Type Time(s) Time(frame) dist-to-prev
- Type is one of [S]tart point, [M]id-point, or [E]nd point
- dist-to-prev is frame distance to previous signal divided by frame-dist
''')
bits = ['']
nums = [[]]
t_between = []
t_lengths = []
since_start = 0
for x, at, dist, typ in points:
def time_diff_tpl(diff):
return (round(diff / freq), diff / SAMPLE_LEN * TRACK_LEN)
in_samples = round(dist / freq)
print('{} {:.2f} {} {}'.format(typ, at, x, in_samples))
if typ == 'S':
# bits[-1] += '0' * (in_samples - 1) # consider space between
bits[-1] += '1'
t_between.append(time_diff_tpl(dist))
since_start = 0
elif typ == 'E':
bits[-1] += '0' * (in_samples - 1)
bits[-1] += '0' # or 1?
missing_bits = 8 - len(bits[-1]) % 8
if missing_bits != 8:
# bits[-1] = '0' * missing_bits + bits[-1]
bits[-1] += '0' * missing_bits
since_start += dist
t_lengths.append(time_diff_tpl(since_start))
bits.append('')
nums[-1].append(in_samples)
nums.append([])
else:
since_start += dist
bits[-1] += '0' * (in_samples - 1)
bits[-1] += '1'
nums[-1].append(in_samples)
if bits[-1] == '':
del bits[-1]
if not nums[-1]:
del nums[-1]
print()
print('Distance between transmissions:')
print(', '.join(['{} ({:.2f}s)'.format(x, y) for x, y in t_between]))
print()
print('Lengths of transmission:')
print(', '.join(['{} ({:.2f}s)'.format(x, y) for x, y in t_lengths]))
print()
print('Individual signals:')
for i, x in enumerate(nums):
print(' {:2}: {}'.format(i, x))
print()
print('Individual signals (total time):')
for i, x in enumerate(nums):
r = [0]
for n in x:
r.append(r[-1] + n)
print(' {:2}: {}'.format(i, r[1:]))
print()
print('''
The following assumes that each transmission:
- begins with a 1 bit
- end is always a 0 bit
- midpoints are '0' * (dist-to-prev - 1) + '1'
- no counting in-between transmissions
Here is a representation of the individual transmissions,
as well as the full string at the end. Results are:
(0): signals are 1 bit, read left-to-right
(1): reverse bit order (aka. read right-to-left)
(2): as (0) but with inverted bits
(3): reversed and inverted
Interpreting individual transmissions:
''')
def print_arr_w_alternates(bits, fn):
print('0\n{}'.format([fn(x) for x in bits]))
print('1\n{}'.format([fn(x[::-1]) for x in bits]))
print('2\n{}'.format([fn(flip_bits(x)) for x in bits]))
print('3\n{}'.format([fn(flip_bits(x)[::-1]) for x in bits]))
print()
def print_str_w_alternates(bits, fn):
not_bits = flip_bits(bits)
print('0: {}'.format(fn(bits)))
print('1: {}'.format(fn(bits[::-1])))
print('2: {}'.format(fn(not_bits)))
print('3: {}'.format(fn(not_bits[::-1])))
print()
# print('As numbers:')
# print_arr_w_alternates(bits, lambda x: int(x, 2))
# print('As binary:')
# print_arr_w_alternates(bits, lambda x: x)
# print('As hex:')
# print_arr_w_alternates(bits, lambda x: bin_to_hex(x))
print('As text:')
print_arr_w_alternates(bits, lambda x: bin_to_text(x))
print('Interpreting as a whole:')
print()
concat = ''.join([x for x in bits])
# print('As numbers:')
# print_str_w_alternates(concat, lambda x: int(x, 2))
# print('As binary:')
# print_str_w_alternates(concat, lambda x: x)
# print('As hex:')
# print_str_w_alternates(concat, lambda x: bin_to_hex(x))
print('As text:')
print_str_w_alternates(concat, lambda x: bin_to_text(x))
# Least Significant Bit Analysis
# https://medium.com/analytics-vidhya/get-secret-message-from-audio-file-8769421205c3
def analyze_lsb(wav_filename):
obj = wave.open(wav_filename, 'rb')
# print(obj.getparams())
fcount = obj.getnframes()
fcount = 1000
bytes = bytearray(list(obj.readframes(fcount)))
obj.close()
bytes = struct.unpack('H' * (len(bytes) // 2), bytes)
# if not os.path.isdir('tmp'):
# os.mkdir('tmp')
# Every frame LSB
for z in range(1, 2):
for u in range(z):
txt = ''
for i in range(u, len(bytes), z):
f = bytes[i] & (1 << 0)
txt += '1' if f else '0'
# txt += chr(bytes[i])
# print(txt)
print(bin_to_text(txt))
# Alternating frame LSB
# left = bytes[::2]
# right = bytes[1::2]
# for z in range(1, 2):
# for u in range(z):
# txt = ''
# for i in range(u, len(left), 2):
# if i % 2 == 0:
# txt += str(left[i] & 1)
# # txt += chr(left[i])
# else:
# txt += str(right[i] & 1)
# # txt += chr(right[i])
# # print(txt)
# print(bin_to_text(txt))
analyze_db_peaks('audio_files/761_convergePitch_2.wav', force=False)
# analyze_lsb('audio_files/761.wav')