130 lines
9.9 KiB
HTML
Generated
130 lines
9.9 KiB
HTML
Generated
<!DOCTYPE html>
|
||
<html lang="en">
|
||
<head>
|
||
<meta charset="utf-8"/>
|
||
<meta name="viewport" content="initial-scale=1.0,maximum-scale=1.0" />
|
||
<title>jpg107-167 – Page Analysis</title>
|
||
<link rel="stylesheet" type="text/css" href="../style.css">
|
||
</head>
|
||
<body>
|
||
<nav class="small">
|
||
<a href="../index.html" class="home"></a>
|
||
<a href="#top">Top</a>
|
||
<a href="#ioc">IoC</a>
|
||
<a href="#mod-ioc">Mod-IoC</a>
|
||
<a href="#pattern-ioc">Pattern-IoC</a>
|
||
</nav>
|
||
<h1 id="top">Page Analysis: jpg107-167</h1>
|
||
<p>
|
||
For a basic “Count”, “Double-Letter Occurrence”, “Running IoC”, and “Concealment” analysis use this, general purpose, <a href="../analysis.html?file=jpg107-167">cipher analysis tool</a>.
|
||
</p>
|
||
|
||
<h2 id="ioc">Index of Coincidence (IoC)</h2>
|
||
<p>
|
||
Quick IoC recap: Normal rune-english IoC is about 1.77.
|
||
Values below 1.4 are highly unlikely to be anywhat meaningful.
|
||
Predicting english text with IoC gets worse if the text is very short.
|
||
</p>
|
||
<p>
|
||
Here, we are considering either ᚠ being an interrupt; or it's inverse ᛠ.
|
||
The numbers (1–32) represent the key length.
|
||
With a key length of 5, every fifth rune will be decrypted with the same alphabet.
|
||
</p>
|
||
<p>
|
||
<b>Note:</b> The darker the cell, the better the prediction.
|
||
The runes per length columns influences the results of the other columns; so if this is low, the other columns are not reliable.
|
||
</p>
|
||
<table>
|
||
<tr><th></th><th colspan="2">IoC-<a href="./ioc/high.html">high</a></th><th colspan="2">IoC-<a href="./ioc/norm.html">norm</a></th><th colspan="2">Runes / keylen</th></tr>
|
||
<tr><th></th><th>ᚠ</th><th>ᛠ</th><th>ᚠ</th><th>ᛠ</th><th>ᚠ</th><th>ᛠ</th></tr>
|
||
<tr><th>1</th><td class="m0">1.16</td><td class="m0">1.17</td><td class="m0">0.39</td><td class="m1">0.40</td><td class="m15">319</td><td class="m15">319</td></tr>
|
||
<tr><th>2</th><td class="m0">1.16</td><td class="m1">1.26</td><td class="m0">0.38</td><td class="m2">0.48</td><td class="m15">159</td><td class="m15">159</td></tr>
|
||
<tr><th>3</th><td class="m0">1.20</td><td class="m2">1.30</td><td class="m1">0.42</td><td class="m3">0.52</td><td class="m15">106</td><td class="m15">106</td></tr>
|
||
<tr><th>4</th><td class="m0">1.14</td><td class="m4">1.34</td><td class="m0">0.37</td><td class="m5">0.57</td><td class="m10">79</td><td class="m10">79</td></tr>
|
||
<tr><th>5</th><td class="m0">1.19</td><td class="m3">1.34</td><td class="m1">0.42</td><td class="m4">0.56</td><td class="m7">63</td><td class="m7">63</td></tr>
|
||
<tr><th>6</th><td class="m0">1.19</td><td class="m5">1.37</td><td class="m1">0.41</td><td class="m5">0.59</td><td class="m5">53</td><td class="m5">53</td></tr>
|
||
<tr><th>7</th><td class="m0">1.19</td><td class="m3">1.32</td><td class="m1">0.42</td><td class="m3">0.50</td><td class="m4">45</td><td class="m4">45</td></tr>
|
||
<tr><th>8</th><td class="m0">1.19</td><td class="m8">1.45</td><td class="m1">0.41</td><td class="m7">0.67</td><td class="m3">39</td><td class="m3">39</td></tr>
|
||
<tr><th>9</th><td class="m1">1.26</td><td class="m7">1.43</td><td class="m3">0.49</td><td class="m6">0.61</td><td class="m2">35</td><td class="m2">35</td></tr>
|
||
<tr><th>10</th><td class="m0">1.19</td><td class="m3">1.32</td><td class="m1">0.42</td><td class="m4">0.54</td><td class="m1">31</td><td class="m1">31</td></tr>
|
||
<tr><th>11</th><td class="m0">1.18</td><td class="m9">1.49</td><td class="m1">0.41</td><td class="m6">0.64</td><td class="m1">29</td><td class="m1">29</td></tr>
|
||
<tr><th>12</th><td class="m0">1.10</td><td class="m6">1.41</td><td class="m0">0.30</td><td class="m6">0.62</td><td class="m0">26</td><td class="m0">26</td></tr>
|
||
<tr><th>13</th><td class="m15">2.15</td><td class="m15">2.01</td><td class="m9">0.74</td><td class="m9">0.75</td><td class="m0">24</td><td class="m0">24</td></tr>
|
||
<tr><th>14</th><td class="m0">1.15</td><td class="m7">1.45</td><td class="m0">0.36</td><td class="m5">0.58</td><td class="m0">22</td><td class="m0">22</td></tr>
|
||
<tr><th>15</th><td class="m0">1.09</td><td class="m9">1.49</td><td class="m0">0.31</td><td class="m5">0.59</td><td class="m0">21</td><td class="m0">21</td></tr>
|
||
<tr><th>16</th><td class="m0">1.19</td><td class="m10">1.52</td><td class="m0">0.32</td><td class="m6">0.63</td><td class="m0">19</td><td class="m0">19</td></tr>
|
||
<tr><th>17</th><td class="m0">1.16</td><td class="m7">1.44</td><td class="m0">0.39</td><td class="m4">0.55</td><td class="m0">18</td><td class="m0">18</td></tr>
|
||
<tr><th>18</th><td class="m4">1.35</td><td class="m10">1.53</td><td class="m0">0.38</td><td class="m5">0.57</td><td class="m0">17</td><td class="m0">17</td></tr>
|
||
<tr><th>19</th><td class="m0">1.19</td><td class="m13">1.61</td><td class="m0">0.34</td><td class="m6">0.64</td><td class="m0">16</td><td class="m0">16</td></tr>
|
||
<tr><th>20</th><td class="m4">1.35</td><td class="m13">1.61</td><td class="m2">0.45</td><td class="m5">0.58</td><td class="m0">15</td><td class="m0">15</td></tr>
|
||
<tr><th>21</th><td class="m2">1.29</td><td class="m10">1.52</td><td class="m1">0.41</td><td class="m5">0.57</td><td class="m0">15</td><td class="m0">15</td></tr>
|
||
<tr><th>22</th><td class="m0">1.20</td><td class="m15">1.81</td><td class="m0">0.35</td><td class="m4">0.55</td><td class="m0">14</td><td class="m0">14</td></tr>
|
||
<tr><th>23</th><td class="m14">1.65</td><td class="m15">1.82</td><td class="m0">0.26</td><td class="m5">0.59</td><td class="m0">13</td><td class="m0">13</td></tr>
|
||
<tr><th>24</th><td class="m0">1.14</td><td class="m10">1.51</td><td class="m0">0.32</td><td class="m4">0.53</td><td class="m0">13</td><td class="m0">13</td></tr>
|
||
<tr><th>25</th><td class="m0">1.04</td><td class="m14">1.65</td><td class="m0">0.19</td><td class="m2">0.48</td><td class="m0">12</td><td class="m0">12</td></tr>
|
||
<tr><th>26</th><td class="m15">2.21</td><td class="m15">2.00</td><td class="m5">0.57</td><td class="m5">0.60</td><td class="m0">12</td><td class="m0">12</td></tr>
|
||
<tr><th>27</th><td class="m1">1.27</td><td class="m14">1.64</td><td class="m0">0.32</td><td class="m2">0.45</td><td class="m0">11</td><td class="m0">11</td></tr>
|
||
<tr><th>28</th><td class="m0">1.10</td><td class="m12">1.57</td><td class="m0">0.16</td><td class="m1">0.41</td><td class="m0">11</td><td class="m0">11</td></tr>
|
||
<tr><th>29</th><td class="m3">1.33</td><td class="m15">1.74</td><td class="m0">0.29</td><td class="m2">0.47</td><td class="m0">11</td><td class="m0">11</td></tr>
|
||
<tr><th>30</th><td class="m0">1.18</td><td class="m11">1.56</td><td class="m0">0.32</td><td class="m1">0.42</td><td class="m0">10</td><td class="m0">10</td></tr>
|
||
<tr><th>31</th><td class="m0">1.22</td><td class="m15">1.76</td><td class="m0">0.18</td><td class="m3">0.50</td><td class="m0">10</td><td class="m0">10</td></tr>
|
||
<tr><th>32</th><td class="m0">1.10</td><td class="m15">1.95</td><td class="m0">0.14</td><td class="m1">0.40</td><td class="m0">9</td><td class="m0">9</td></tr>
|
||
<tr class="small"><th>best</th><td>26</td><td>13</td><td>13</td><td>13</td></tr>
|
||
</table>
|
||
|
||
|
||
<h2 id="mod-ioc">Modulo IoC</h2>
|
||
<p>
|
||
This section explores the idea of multiple alphabet-sets alternating.
|
||
For example, have two or three Vigenere ciphers that switch after each rune.
|
||
A Vigenere with key length 3 (ABC) plus another Vigenere with key length 4 (DEFG) will generate a pattern that only repeats after 24 runes (ADBECFAGBDCEAFBGCDAEBFCG).
|
||
So, the first group will represent every 2nd letter (starting with the first), and the second group will also contain every 2nd letter but starting with the second.
|
||
</p>
|
||
<p>
|
||
There are two main distinctions.
|
||
Interrupt-first-then-mod assumes that an interrupt will pause the alternation between the different groups.
|
||
Mod-first-then-interrupt assumes that an interrupt will pause the key alternation within that group.
|
||
Lets look at the example Vig(3) + Vig(5).
|
||
With the first, the decryption sequence is: Vig(3)[0], interrupt, Vig(5)[0], Vig(3)[1], etc.
|
||
With the second, the decryption sequence is: Vig(3)[0], interrupt, Vig(3)[1], Vig(5)[0], etc.
|
||
Note that the second decryption still switched to Vig(5) but was ignored because it was an interrupt.
|
||
</p>
|
||
<p>
|
||
<b>Note:</b> The row header format is {interrupt}.{mod}.{offset}.
|
||
“ᚠ.2.0” means, assume the interrupt is ᚠ, divide the data into two sets, then look at the first set (rune at index 0, rune at index 2, etc.).
|
||
The column shows the key length for which the IoC was calculated.
|
||
In the previous example, with a key length of 7, indices 0, 14, 28, ... are part of one alphabet, and indices 2, 17, 30, ... are part of another alphabet.
|
||
Both are from the same alphabet-set!
|
||
</p>
|
||
<p class="red">Mod-IoC is disabled on solved pages</p>
|
||
|
||
|
||
<h2 id="pattern-ioc">Pattern IoC</h2>
|
||
<p>
|
||
This section looks at different ways to extend a short key into a longer one.
|
||
The result of this expansion is still a plain Vigenere-like encryption but the key is so long that we would not be able to find it with IoC analysis.
|
||
However, we can use the fact that the same letters appear again and so there are less alphabets than the key length.
|
||
</p>
|
||
<p>
|
||
The two mirror pattern variants simply flip the key in reverse and append it to the original key.
|
||
For example, the key ABCD will become ABCDDCBA (Variant A) or ABCDCB (Variant B).
|
||
Both keys will repeat after that.
|
||
Notice how the first variant produces double letters (DD and AA) and the second does not.
|
||
</p>
|
||
<p>
|
||
The shift pattern simply offsets the key by one and appends this permutation to the key.
|
||
For example, ABCD becomes ABCDBCDACDABDABC.
|
||
Each key length n (here 4) has n - 1 shifts.
|
||
The example before was shift = 1.
|
||
The other two are ABCDCDAB (shift=2) and ABCDDABCCDABBCDA (shift=3).
|
||
And again, like with the mirror pattern, we greatly increase the key length without increasing the alphabet count.
|
||
</p>
|
||
<p>
|
||
<b>Note:</b> While the column in the mirror pattern represents the key length, the column in the shift pattern is <b>not</b> the key length.
|
||
Instead, the key length is given in the row title, e.g., “ᚠ.5”. The column header represents the key shift variation.
|
||
</p>
|
||
<p class="red">Pattern-IoC is disabled on solved pages</p>
|
||
|
||
|
||
</body>
|
||
</html> |