#!/usr/bin/env python3 import os import sys import common_lib as mylib import tracker_download as tracker THRESHOLD_PERCENT_OF_LOGS = 0.33 # domain appears in % recordings THRESHOLD_MIN_AVG_LOGS = 0.4 # at least x times in total (after %-thresh) level3_doms = None def dom_in_3rd_domain(needle): global level3_doms if not level3_doms: level3_doms = mylib.read_list('3rd-domains.txt') return mylib.bintree_lookup(level3_doms, needle) def get_parent_domain(subdomain): parts = subdomain.split('.') if len(parts) < 3: return subdomain elif parts[-1].isdigit(): return subdomain # ip address elif dom_in_3rd_domain(parts[-1] + '.' + parts[-2]): return '.'.join(parts[-3:]) else: return '.'.join(parts[-2:]) def json_combine(bundle_id): def inc_dic(ddic, key, num): try: ddic[key][1].append(num) except KeyError: ddic[key] = (tracker.is_tracker(key), [num]) res = dict({'rec_len': [], 'name': mylib.app_name(bundle_id)}) pardom = dict() subdom = dict() latest = 0 for fname, jdata in mylib.enum_jsons(bundle_id): latest = max(latest, os.path.getmtime(fname)) # or getctime # if not res['name']: # res['name'] = jdata['app-name'] res['rec_len'].append(jdata['duration']) try: logs = jdata['logs'] uniq_par = dict() for subdomain in logs: occurs = len(logs[subdomain]) inc_dic(subdom, subdomain, occurs) par_dom = get_parent_domain(subdomain) try: uniq_par[par_dom] += occurs except KeyError: uniq_par[par_dom] = occurs for name, val in uniq_par.items(): inc_dic(pardom, name, val) except KeyError: mylib.err('bundle-combine', 'skip: ' + fname) res['pardom'] = pardom res['subdom'] = subdom res['last_date'] = latest return res def json_evaluate_inplace(obj): if not obj['name']: obj['name'] = '< App-Name >' rec_count = len(obj['rec_len']) time_total = sum(obj['rec_len']) del(obj['rec_len']) obj['sum_rec'] = rec_count obj['sum_logs'] = sum([sum(x[1]) for x in obj['pardom'].values()]) obj['sum_logs_pm'] = obj['sum_logs'] / (time_total or 1) * 60 obj['sum_time'] = time_total obj['avg_time'] = time_total / rec_count def transform(ddic): res = list() c_sum = 0 c_trkr = 0 for name, (is_tracker, counts) in ddic.items(): rec_percent = len(counts) / rec_count if rec_percent < THRESHOLD_PERCENT_OF_LOGS: continue avg = sum(counts) / rec_count # len(counts) if avg < THRESHOLD_MIN_AVG_LOGS: continue res.append([name, round(avg + 0.001), is_tracker]) c_sum += avg c_trkr += avg if is_tracker else 0 res.sort(key=lambda x: (-x[1], x[0])) # sort by count desc, then name return res, c_trkr, c_sum obj['pardom'], p_t, p_c = transform(obj['pardom']) obj['subdom'], s_t, s_c = transform(obj['subdom']) obj['tracker_percent'] = s_t / (s_c or 1) obj['avg_logs'] = s_c obj['avg_logs_pm'] = s_c / (obj['avg_time'] or 1) * 60 def process(bundle_ids, where=None): print('writing combined json ...') if bundle_ids == ['*']: bundle_ids = list(mylib.enum_data_appids()) affected_ids = [] haystack = sorted([x[::-1] for x in where]) if where else None for bid in bundle_ids: obj = json_combine(bid) should_update = False if not haystack: should_update = True else: for x in obj['subdom']: if mylib.bintree_lookup(haystack, x[::-1]): should_update = True break if should_update: print(' ' + bid) mylib.json_write_combined(bid, obj) json_evaluate_inplace(obj) mylib.json_write_evaluated(bid, obj) affected_ids.append(bid) print('') return affected_ids if __name__ == '__main__': args = sys.argv[1:] if len(args) > 0: process(args) else: # process(['*']) mylib.usage(__file__, '[bundle_id] [...]')